K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 giờ trước (15:14)

Bài giải:

Số tiền mỗi đơn vị đóng góp tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách, nên hệ số tỉ lệ của từng đơn vị là:

  • Đơn vị 1: \(\frac{8}{1 , 5} = 5,33\)
  • Đơn vị 2: \(\frac{5}{3} \approx 1,67\)
  • Đơn vị 3: \(\frac{4}{1} = 4\)

Tổng hệ số: \(5,33 + 1,67 + 4 = 11\).

Vì tổng chi phí là \(340\) triệu đồng, mỗi đơn vị hệ số 1 sẽ trả \(\frac{340}{11} \approx 30,94\) triệu đồng.

Vậy:

  • Đơn vị 1 trả: \(5,33 \times 30,94 \approx 164,85\) triệu đồng
  • Đơn vị 2 trả: \(1,67 \times 30,94 \approx 51,52\) triệu đồng
  • Đơn vị 3 trả: \(4 \times 30,94 \approx 123,64\) triệu đồng.
5 giờ trước (15:13)

Gọi \(x\) là số quả táo của mỗi người ban đầu.

*Giá bán dự kiến của A là 10 000 đồng/3 quả, tức mỗi quả \(\frac{10 \textrm{ } 000}{3}\) đồng

*Giá bán dự kiến của B là 10 000 đồng/2 quả, tức mỗi quả 5 000 đồng.

+, Nếu bán riêng, số tiền dự kiến của cả hai là \(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x\).

Khi B bán chung cả 2 loại táo với giá 20 000 đồng/5 quả, tức 4 000 đồng/quả, tổng số quả là \(2 x\) nên số tiền thực tế thu được là \(8 \textrm{ } 000 x\). Theo đề, số tiền thực tế ít hơn dự kiến 15 000 đồng nên ta có phương trình là:

\(\frac{10 \textrm{ } 000}{3} x + 5 \textrm{ } 000 x - 8 \textrm{ } 000 x = 15 \textrm{ } 000\)

=> \(x = 45\). Mỗi người có 45 quả, khi bán chung giá 4 000 đồng/quả, mỗi người nhận \(45 \times 4 \textrm{ } 000 = 180 \textrm{ } 000\) đồng. Vậy số tiền B thu nhiều hơn A là \(0\) đồng.

5 giờ trước (15:13)

Tick cho mik nhé

Gọi ba phần được chia lần lượt là x,y,z

Ba phần được chia theo tỉ lệ là \(0,5:1\frac23:2\frac14=\frac12:\frac53:\frac94\) nên \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}\)

Đặt \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}=k\)

=>\(x=\frac12k;y=\frac53k;z=\frac94k\)

Tổng bình phương của ba phần được chia là 4660 nên ta có:

\(x^2+y^2+z^2=4660\)

=>\(\left(\frac12k\right)^2+\left(\frac53k\right)^2+\left(\frac94k\right)^2=4660\)

=>\(\frac14k^2+\frac{25}{9}k^2+\frac{81}{16}k^2=4660\)

=>\(k^2=576\)

=>\(\left[\begin{array}{l}k=24\\ k=-24\end{array}\right.\)

TH1: k=24

=>\(\begin{cases}x=\frac12\cdot24=12\\ y=\frac53\cdot24=40\\ z=\frac94\cdot24=54\end{cases}\)

A=x+y+z=12+40+54=62+54=116

TH2: k=-24

=>\(\begin{cases}x=\frac12\cdot\left(-24\right)=12\\ y=\frac53\cdot\left(-24\right)=40\\ z=\frac94\cdot\left(-24\right)=54\end{cases}\)

A=x+y+z=-12-40-54=-116

Các cặp góc so le trong là: \(\hat{A_1};\hat{B_7}\) ; \(\hat{A_4};\hat{B_6}\)

Các cặp góc đồng vị là: \(\hat{A_2};\hat{B_6}\) ; \(\hat{A_1};\hat{B_5}\) ; \(\hat{A_3};\hat{B_7}\); \(\hat{A_4};\hat{B_8}\)

Các cặp góc trong cùng phía là: \(\hat{A_1};\hat{B_6}\) ; \(\hat{A_4};\hat{B_7}\)

Các góc ngoài cùng phía là: \(\hat{A_3};\hat{B_8}\) ; \(\hat{A_2};\hat{B_5}\)

Các góc so le ngoài là: \(\hat{A_2};\hat{B_8}\) ; \(\hat{A_3};\hat{B_5}\)

a: x,y là hai đại lượng tỉ lệ nghịch

=>\(x_1\cdot y_1=x_2\cdot y_2\)

=>\(3\cdot y_1=2\cdot y_2\)

=>\(\frac{y_1}{2}=\frac{y_2}{3}\)

\(2y_1+3\cdot y_2=-26\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{y_1}{2}=\frac{y_2}{3}=\frac{2y_1+3y_1}{2\cdot2+3\cdot3}=\frac{-26}{13}=-2\)

=>\(\begin{cases}y_1=-2\cdot2=-4\\ y_2=-2\cdot3=-6\end{cases}\)

b: \(x_1\cdot y_1=x_2\cdot y_2\)

=>\(x_1\cdot\left(-10\right)=y_2\cdot\left(-4\right)\)

=>\(5x_1=2y_2\)

=>\(\frac{x_1}{2}=\frac{y_2}{5}\)

\(3x_1-2y_2=32\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x_1}{2}=\frac{y_2}{5}=\frac{3x_1-2y_2}{3\cdot2-2\cdot5}=\frac{32}{-4}=-8\)

=>\(\begin{cases}x_1=-8\cdot2=-16\\ y_2=-8\cdot5=-40\end{cases}\)

Ta có: \(x+120^0=180^0\) (hai góc kề bù)

=>\(x=180^0-120^0=60^0\)

Ta có: x=y (hai góc đối đỉnh)

\(x=60^0\)

nên \(y=60^0\)

Ta có: \(z+60^0=180^0\) (hai góc kề bù)

=>\(z=180^0-60^0=120^0\)

13 tháng 8

x = 60\(^0\) (hai góc đồng vị)

x = y = 60\(^0\) (hai góc đối đỉnh)

z = 120\(^0\) (slt)

t = 60\(^0\) (hai góc đối đỉnh)



23 giờ trước (20:56)

Gọi BM là tia đối của tia By

Ta có: \(\hat{ABy}+\hat{ABM}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=90^0-60^0=30^0\)

Ta có: \(\hat{xAm}=\hat{ABM}\left(=60^0\right)\)

mà hai góc này là hai góc ở vị đồng vị

nên Ax//BM

=>Ax//By

Ta có: \(\hat{CBM}+\hat{BCz}=30^0+150^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên By//Cz

Ta có: Ax//By

By//Cz

Do đó: Ax//By//Cz

23 giờ trước (20:54)

Bài 4: Gọi BM là tia đối của tia Bb

Ta có: \(\hat{ABM}+\hat{ABb}=180^0\) (hai góc kề bù)

=>\(\hat{ABM}=180^0-120^0=60^0\)

Ta có: tia BM nằm giữa hai tia BA và BC

=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)

=>\(\hat{CBM}=80^0-60^0=20^0\)

ta có: \(\hat{ABM}+\hat{A}=60^0+120^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên a//b

Ta có: \(\hat{CBM}+\hat{C}=20^0+160^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên b//c

Ta có: a//b

b//c

Do đó: a//c

Bài 3:

Ta có: \(\hat{A_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên a//b

Ta có: \(\hat{C_1}=\hat{C_2}\) (hai góc đối đỉnh)

\(\hat{C_2}=110^0\)

nên \(\hat{C_1}=110^0\)

ta có: \(\hat{C_1}=\hat{B_1}\left(=110^0\right)\)

mà hai góc này là hai góc ở vị trí đồng vị

nên b//c

Ta có: a//b

b//c

Do đó: a//c

1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)

Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)

Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)

2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)

=>\(\hat{A_3}=180^0-60^0=120^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=60^0\)

nên \(\hat{A_4}=60^0\)

Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_3}=120^0\)

nên \(\hat{A_1}=120^0\)

Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)

=>\(\hat{B_3}=180^0-60^0=120^0\)

ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)

\(\hat{B_2}=60^0\)

nên \(\hat{B_4}=60^0\)