
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

10) đkxđ: \(x\ne\pm3\)
\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)
11) đkxđ: \(x\ne-1\)
\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)
\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)
13) đkxđ: \(x\ne\pm\frac32\)
\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Bài 5:
a: \(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b: \(M=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1^3-3xy+3xy=1\)
\(N=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left\lbrack\left(x+y\right)^2-2xy\right\rbrack+6x^2y^2\)
\(=1^3-3xy\cdot1+3xy\left\lbrack1+2xy\right\rbrack-6x^2y^2\)
=1-3xy+3xy\(+6x^2y^2-6x^2y^2\)
=1
Bài 4:
a: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
=>\(x^3-6x^2+12x-8-x\left(x^3-1\right)+6x^2=5\)
=>\(x^3+12x-8-x^3+x=5\)
=>13x-8=5
=>13x=13
=>x=1
b: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
=>\(x^3-6x^2+12x-8-x^3+6x^2=4\)
=>12x-8=4
=>12x=12
=>x=1
c: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
=>\(x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)
=>\(9x^3+9x^2+27x+28-9x^3-6x^2-x=28\)
=>\(3x^2+26x=0\)
=>x(3x+26)=0
=>\(\left[\begin{array}{l}x=0\\ 3x+26=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac{26}{3}\end{array}\right.\)
d: \(\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
=>\(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
=>\(-3x^4+3x^2=0\)
=>\(-3x^2\left(x^2-1\right)=0\)
=>\(\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)
e: \(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-\frac32\right)=3\)
=>\(x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)
=>15x-7=3
=>15x=10
=>\(x=\frac{10}{15}=\frac23\)
f: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
=>\(6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
=>\(x=-\frac{6}{12}=-\frac12\)
Bài 3:
a: \(A=x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)
Khi x=6 thì \(A=\left(6+4\right)^3=10^3=1000\)
b: \(B=x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Khi x=22 thì \(B=\left(22-2\right)^3=20^3=8000\)
c: \(C=8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
Thay x=25,5 vào C, ta được:
\(C=\left(2\cdot25,5-1\right)^3=50^3=125000\)
d: \(D=1-x+\frac{x^2}{3}-\frac{x^3}{27}\)
\(=1^3-3\cdot1^2\cdot\frac13x+3\cdot1\cdot\left(\frac13x\right)^3-\left(\frac13x\right)^3=\left(1-\frac13x\right)^3\)
Thay x=-27 vào D, ta được:
\(D=\left\lbrack1-\left(-\frac13\right)\cdot27\right\rbrack^3=10^3=1000\)
e: \(E=\frac{x^3}{y^3}+\frac{6x^2}{y^2}+12\cdot\frac{x}{y}+8\)
\(=\left(\frac{x}{y}\right)^3+3\cdot\left(\frac{x}{y}\right)^2\cdot2+3\cdot\frac{x}{y}\cdot2^2+2^3\)
\(=\left(\frac{x}{y}+2\right)^3\)
Thay x=36;y=2 vào D, ta được:
\(D=\left(\frac{36}{2}+2\right)^3=\left(18+2\right)^3=20^3=8000\)
Bài 2:
a: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\)
b: \(8-12x+6x^2-x^3=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3=\left(2-x\right)^3\)
c: \(27+27x+9x^2+x^3\)
\(=x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3\)
\(=\left(x+3\right)^3\)
d: \(\left(x-y\right)^3+\left(x-y\right)^2+\frac13\left(x-y\right)+\frac{1}{27}\)
\(=\left(x-y\right)^3+3\cdot\left(x-y\right)^2\cdot\frac13+3\cdot\left(x-y\right)\cdot\left(\frac13\right)^2+\left(\frac13\right)^3\)
\(=\left(x-y+\frac13\right)^3\)

Bài 7:
a: Xét tứ giác AECF có
D là trung điểm chung của AC và EF
=>AECF là hình bình hành
=>AE//CF và AE=CF
Ta có: AE//CF
=>CF//BE
ta có: AE=CF
AE=BE
Do đó: CF=BE
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
b: BEFC là hình bình hành
=>EF//BC
=>DK//BC
Xét tứ giác BDKC có
BD//KC
BC//DK
Do đó: BDKC là hình bình hành
Bài 9:
a: Ta có: BH⊥AC
CF⊥CA
Do đó: BH//CF
Ta có: CH⊥AB
BF⊥BA
Do đó: CH//BF
Xét tứ giác BHCF có
BH//CF
BF//CH
Do đó: BHCF là hình bình hành
b: Xét tứ giác ABFC có \(\hat{ABF}+\hat{ACF}+\hat{BAC}+\hat{BFC}=360^0\)
=>\(\hat{BAC}+\hat{BFC}=360^0-90^0-90^0=180^0\)
Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.