
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

10) đkxđ: \(x\ne\pm3\)
\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)
11) đkxđ: \(x\ne-1\)
\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)
\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)
13) đkxđ: \(x\ne\pm\frac32\)
\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)

a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

Bài 5:
a: \(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=x^3+y^3\)
b: \(M=x^3+y^3+3xy\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\)
\(=1^3-3xy+3xy=1\)
\(N=x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\)
\(=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left\lbrack\left(x+y\right)^2-2xy\right\rbrack+6x^2y^2\)
\(=1^3-3xy\cdot1+3xy\left\lbrack1+2xy\right\rbrack-6x^2y^2\)
=1-3xy+3xy\(+6x^2y^2-6x^2y^2\)
=1
Bài 4:
a: \(\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x^2=5\)
=>\(x^3-6x^2+12x-8-x\left(x^3-1\right)+6x^2=5\)
=>\(x^3+12x-8-x^3+x=5\)
=>13x-8=5
=>13x=13
=>x=1
b: \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
=>\(x^3-6x^2+12x-8-x^3+6x^2=4\)
=>12x-8=4
=>12x=12
=>x=1
c: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
=>\(x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1=28\)
=>\(9x^3+9x^2+27x+28-9x^3-6x^2-x=28\)
=>\(3x^2+26x=0\)
=>x(3x+26)=0
=>\(\left[\begin{array}{l}x=0\\ 3x+26=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=-\frac{26}{3}\end{array}\right.\)
d: \(\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
=>\(x^6-3x^4+3x^2-1-\left(x^6-1\right)=0\)
=>\(-3x^4+3x^2=0\)
=>\(-3x^2\left(x^2-1\right)=0\)
=>\(\left[\begin{array}{l}x^2=0\\ x^2=1\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=1\\ x=-1\end{array}\right.\)
e: \(\left(x+1\right)^3+\left(x-2\right)^3-2x^2\left(x-\frac32\right)=3\)
=>\(x^3+3x^2+3x+1+x^3-6x^2+12x-8-2x^3+3x^2=3\)
=>15x-7=3
=>15x=10
=>\(x=\frac{10}{15}=\frac23\)
f: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
=>\(x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
=>\(6x^2+2-6x^2+12x-6=-10\)
=>12x-4=-10
=>12x=-6
=>\(x=-\frac{6}{12}=-\frac12\)
Bài 3:
a: \(A=x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3=\left(x+4\right)^3\)
Khi x=6 thì \(A=\left(6+4\right)^3=10^3=1000\)
b: \(B=x^3-6x^2+12x-8\)
\(=x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3\)
\(=\left(x-2\right)^3\)
Khi x=22 thì \(B=\left(22-2\right)^3=20^3=8000\)
c: \(C=8x^3-12x^2+6x-1\)
\(=\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\)
\(=\left(2x-1\right)^3\)
Thay x=25,5 vào C, ta được:
\(C=\left(2\cdot25,5-1\right)^3=50^3=125000\)
d: \(D=1-x+\frac{x^2}{3}-\frac{x^3}{27}\)
\(=1^3-3\cdot1^2\cdot\frac13x+3\cdot1\cdot\left(\frac13x\right)^3-\left(\frac13x\right)^3=\left(1-\frac13x\right)^3\)
Thay x=-27 vào D, ta được:
\(D=\left\lbrack1-\left(-\frac13\right)\cdot27\right\rbrack^3=10^3=1000\)
e: \(E=\frac{x^3}{y^3}+\frac{6x^2}{y^2}+12\cdot\frac{x}{y}+8\)
\(=\left(\frac{x}{y}\right)^3+3\cdot\left(\frac{x}{y}\right)^2\cdot2+3\cdot\frac{x}{y}\cdot2^2+2^3\)
\(=\left(\frac{x}{y}+2\right)^3\)
Thay x=36;y=2 vào D, ta được:
\(D=\left(\frac{36}{2}+2\right)^3=\left(18+2\right)^3=20^3=8000\)
Bài 2:
a: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3=\left(x-1\right)^3\)
b: \(8-12x+6x^2-x^3=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3=\left(2-x\right)^3\)
c: \(27+27x+9x^2+x^3\)
\(=x^3+3\cdot x^2\cdot3+3\cdot x\cdot3^2+3^3\)
\(=\left(x+3\right)^3\)
d: \(\left(x-y\right)^3+\left(x-y\right)^2+\frac13\left(x-y\right)+\frac{1}{27}\)
\(=\left(x-y\right)^3+3\cdot\left(x-y\right)^2\cdot\frac13+3\cdot\left(x-y\right)\cdot\left(\frac13\right)^2+\left(\frac13\right)^3\)
\(=\left(x-y+\frac13\right)^3\)

bài 1:
\(A=-2xy+\frac32xy^2+\frac12xy^2+xy-3\)
\(=\left(\frac32+\frac12\right)xy^2+\left(-2xy+xy\right)-3\)
\(=2xy^2-xy-3\) (bậc 3)
\(B=-xy^2z+2x^2yz-xyz-3xy^2z-2x^2yz\)
\(=\left(2x^2yz-2x^2yz\right)+\left(-xy^2z-3xy^2z\right)-xyz\)
\(=-4xy^2z-xyz\) (bậc 4)
\(C=4x^2y^3+x^4-2x^2y^3+5x^4-2x^2y^3+3\)
\(=\left(4-2-2\right)x^2y^3+\left(1+5\right)x^4+3\)
\(=6x^4+3\) (bậc 4)
\(D=\frac34xy^2-2xy+3-\frac12xy^2-4xy-7\)
\(=\left(\frac34-\frac12\right)xy^2+\left(-2xy-4xy\right)+\left(3-7\right)\)
\(=\frac14xy^2-6xy-4\) (bậc 3)
\(E=-\frac34x^2y-5xy+\frac12x^2y+10xy-x^2y+xy\)
\(=\left(-\frac34+\frac12-1\right)x^2y+\left(-5+10+1\right)xy\)
\(=-\frac54x^2y+6xy\) (bậc 3)
\(F=3xy^2z-xy^2z-xyz+2xy^2z-3xyz-5xy^2z\)
\(=\left(3-1+2-5\right)xy^2z+\left(-1-3\right)xyz\)
\(=-xy^2z-4xyz\) (bậc 4)
bài 2; 1. thay x=y=-1 vào A ta được:
\(A=6\left(-1\right)\left(-1\right)^2+7\left(-1\right)\left(-1\right)^3+8\left(-1\right)^2\left(-1\right)^3=-7\)
2. \(B=x^6+2x^2y^3-x^2+xy-x^2y^3-x^6+x^5=x^2y^3+xy\)
thay x=-2; y=-1 vào B ta được:
\(4\cdot\left(-1\right)+2=-2\)
3. \(C=7xy^2-4xy+2xy^2-xy-9xy^2+5xy-\frac12x^2y^3=-\frac12x^2y^3\)
thay x = 15; y = -3 vào C ta được:
\(C=-\frac12\cdot15^2\cdot\left(-3\right)^3=3037,5\)
4. \(D=\frac23x^2y+3x^2y-x^2y-1=\frac83x^2y-1\)
thay x = -3; y = 1 vào D ta được:
\(\frac83\cdot\left(-3\right)^2\cdot1-1=23\)
bài 4:
1. \(A+B=\left(x+2y\right)+\left(x-2y\right)=2x\)
\(A-B=\left(x+2y\right)-\left(x-2y\right)=4y\)
2. \(B+A=\left(x^3+2xy^2-2\right)+\left(2x^2y-x^3-3xy^2+1\right)\)
\(=2x^2y+\left(2xy^2-xy^2\right)+\left(-2+1\right)\)
\(=2x^2y+xy^2-1\)
\(B-A=\left(x^3+2xy^2-2\right)-\left(2x^2y-x^3-xy^2+1\right)\)
\(=x^3+2xy^2-2-2x^2y+x^3+xy^2-1\)
\(=2x^3-2x^2y+3xy^2-3\)
3. \(A-B=\left(\frac12x^2y+xy^3-\frac52x^3y^2+x^3\right)-\left(\frac72x^3y^2-\frac12x^2y+xy^3\right)\)
\(=\frac12x^2y+\frac12x^2y+\left(xy^3-xy^3\right)+\left(-\frac52-\frac72\right)x^3y^2+x^3\)
\(=x^2y-6x^3y^2+x^3\)
\(B-A=-\left(A-B\right)=-\left(x^2y-6x^3y^2+x^3\right)=6x^3y^2-x^2y-x^3\)

Bài 9:
Nửa chu vi mảnh đất là 34:2=17(m)
Gọi chiều rộng mảnh đất là x(m)
(ĐIều kiện: 0<x<17/2)
Chiều dài mảnh đất là 17-x(m)
Chiều rộng mảnh đất sau khi thêm 2m là x+2(m)
Chiều dài mảnh đất sau khi thêm 3m là 17-x+3=20-x(m)
Diện tích tăng thêm \(45m^2\) nên ta có:
\(\left(x+2\right)\left(20-x\right)-x\left(17-x\right)=45\)
=>\(20x-x^2+40-2x-17x+x^2=45\)
=>x+40=45
=>x=5(nhận)
vậy: Chiều rộng là 5m
Chiều dài là 17-5=12m
Bài 8:
Gọi thời gian ô tô đi trên đoạn đường AB là x(giờ)
(Điều kiện: x>0)
Thời gian ô tô đi trên đoạn đường BC là x+0,5(giờ)
Độ dài quãng đường AB là 50x(km)
Độ dài quãng đường BC là 45(x+0,5)(km)
Tổng độ dài hai quãng đường là 165km nên ta có:
50x+45(x+0,5)=165
=>50x+45x+22,5=165
=>95x=142,5
=>x=1,5(nhận)
vậy: thời gian ô tô đi trên đoạn đường AB là 1,5(giờ)
thời gian ô tô đi trên đoạn đường BC là 1,5+0,5=2(giờ)
Olm chào em, khi đăng câu hỏi lên diễn đàn Olm, em cần đăng đầy đủ nội dung và yêu cầu, để nhận được sự trợ giúp tốt nhất từ cộng đồng Olm em nhé. Cảm ơn em đã đồng hành cùng Olm. Chúc em học tập hiệu quả và vui vẻ cùng Olm.