
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Cô Hoài giả đó em ạ! Em thông minh đó, vẫn còn nhận ra thiếu chữ quản trị viên!
Khi cô nhắn tin với các em thì cạnh tên hiển thị phải kèm theo tên đăng nhập là: thuonghoaitb và chức danh quản trị viên nữa mới là cô Hoài thật.

a: \(\left\lbrack\left(4^{60}:4^{58}+3^2\right):25-1^{100}\right\rbrack\cdot5^{500}\)
\(=\left\lbrack\frac{\left(4^2+3^2\right)}{25}-1\right\rbrack\cdot5^{500}\)
\(=\left(\frac{25}{25}-1\right)\cdot5^{500}=0\)
b: \(\left\lbrace\left\lbrack\left(10^2-6^2\right):8+1^{100}\right\rbrack:3^2+2^4\right\rbrace:17\)
\(=\frac{\left\lbrace\left\lbrack\frac{\left(100-36\right)}{8}+1\right\rbrack:9+16\right\rbrace}{17}\)
\(=\frac{\left\lbrack64:8+1\right\rbrack:9+16}{17}=\frac{\left(8+1\right):9+16}{17}=\frac{1+16}{17}=1\)

Ta có: \(10A=\frac{10^{21}-60}{10^{21}-6}=\frac{10^{21}-6-54}{10^{21}-6}=1-\frac{54}{10^{21}-6}\)
\(10B=\frac{10^{22}-60}{10^{22}-6}=\frac{10^{22}-6-54}{10^{22}-6}=1-\frac{54}{10^{22}-6}\)
Ta có: \(10^{21}-6<10^{22}-6\)
=>\(\frac{54}{10^{21}-6}>\frac{54}{10^{22}-6}\)
=>\(-\frac{54}{10^{21}-6}<-\frac{54}{10^{22}-6}\)
=>\(-\frac{54}{10^{21}-6}+1<-\frac{54}{10^{22}-6}+1\)
=>10A<10B
=>A<B

a; \(x-33=28\)
\(x=28+33\)
\(x=61\)
Vậy \(x=61\)
b; \(x+55\) = 122
\(x=122-55\)
\(x=\) 67
Vậy \(x=67\)
c; \(x\times34\) = 37
\(x\) = 37 : 34
\(x=\frac{37}{34}\)
Vậy \(x=\frac{37}{34}\)
d; \(x:23\) = 7
\(x=7\times23\)
\(x=161\)
Vậy \(x=161\)
e; \(x^2=81\)
\(x=9^2\)
\(\left[\begin{array}{l}x=-9\\ x=9\end{array}\right.\)
Vậy \(x\in\) {-9; 9}
f; (\(x-3)^3\) = 27
(\(x-3)^3=3^3\)
\(x-3=3\)
\(x=3+3\)
\(x=6\)
Vậy \(x=6\)
a; \(x - 33 = 28\)
\(x = 28 + 33\)
\(x = 61\)
Vậy \(x = 61\)
b; \(x + 55\) = 122
\(x = 122 - 55\)
\(x =\) 67
Vậy \(x = 67\)
c; \(x \times 34\) = 37
\(x\) = 37 : 34
\(x = \frac{37}{34}\)
Vậy \(x = \frac{37}{34}\)
d; \(x : 23\) = 7
\(x = 7 \times 23\)
\(x = 161\)
Vậy \(x = 161\)
e; \(x^{2} = 81\)
\(x = 9^{2}\)
\(\left[\right. x = - 9 \\ x = 9\)
Vậy \(x \in\) {-9; 9}
f; (\(x - 3 \left.\right)^{3}\) = 27
(\(x - 3 \left.\right)^{3} = 3^{3}\)
\(x - 3 = 3\)
\(x = 3 + 3\)
\(x = 6\)
Vậy \(x = 6\)

Bài 8:
a: \(5^3=125;3^5=243\)
mà 125<243
nên \(5^3<3^5\)
b: \(7\cdot2^{13}<8\cdot2^{13}=2^3\cdot2^{13}=2^{16}\)
c: \(27^5=\left(3^3\right)^5=3^{3\cdot5}=3^{15}\)
\(243^3=\left(3^5\right)^3=3^{5\cdot3}=3^{15}\)
Do đó: \(27^5=243^5\)
d: \(625^5=\left(5^4\right)^5=5^{4\cdot5}=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{3\cdot7}=5^{21}\)
mà 20<21
nên \(625^5<125^7\)
Bài 9:
a: \(3^{x}\cdot5=135\)
=>\(3^{x}=\frac{135}{5}=27=3^3\)
=>x=3(nhận)
b: \(\left(x-3\right)^3=\left(x-3\right)^2\)
=>\(\left(x-3\right)^3-\left(x-3\right)^2=0\)
=>\(\left(x-3\right)^2\cdot\left\lbrack\left(x-3\right)-1\right\rbrack=0\)
=>\(\left(x-3\right)^2\cdot\left(x-4\right)=0\)
=>\(\left[\begin{array}{l}x-3=0\\ x-4=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=3\left(nhận\right)\\ x=4\left(nhận\right)\end{array}\right.\)
c: \(\left(2x-1\right)^4=81\)
=>\(\left[\begin{array}{l}2x-1=3\\ 2x-1=-3\end{array}\right.\Rightarrow\left[\begin{array}{l}2x=4\\ 2x=-2\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-1\left(loại\right)\end{array}\right.\)
d: \(\left(5x+1\right)^2=3^2\cdot5+76\)
=>\(\left(5x+1\right)^2=9\cdot5+76=45+76=121\)
=>\(\left[\begin{array}{l}5x+1=11\\ 5x+1=-11\end{array}\right.\Rightarrow\left[\begin{array}{l}5x=10\\ 5x=-12\end{array}\right.\Rightarrow\left[\begin{array}{l}x=2\left(nhận\right)\\ x=-\frac{12}{5}\left(loại\right)\end{array}\right.\)
e: \(5+2^{x-3}=29-\left\lbrack4^2-\left(3^2-1\right)\right\rbrack\)
=>\(2^{x-3}+5=29-\left\lbrack16-9+1\right\rbrack\)
=>\(2^{x-3}+5=29-8=21\)
=>\(2^{x-3}=16=2^4\)
=>x-3=4
=>x=4+3=7(nhận)
f: \(3+2^{x-1}=24-\left\lbrack4^2-\left(2^2-1\right)\right\rbrack\)
=>\(2^{x-1}+3=24-\left\lbrack16-4+1\right\rbrack=24-13=11\)
=>\(2^{x-1}=11-3=8=2^3\)
=>x-1=3
=>x=4(nhận)
Bài 6:
a: \(5\cdot5\cdot5\cdot5\cdot5\cdot5=5^6\)
b: \(27\cdot14\cdot7\cdot2=27\cdot14\cdot14=3^3\cdot14^2\)
c: \(x\cdot x\cdot x\cdot y=x^3\cdot y\)
d: \(5^3\cdot5^4=5^{3+4}=5^7\)
e: \(7^8:7^2=7^{8-2}=7^6\)
f: \(42^7:6^7\cdot49=7^7\cdot49=7^7\cdot7^2=7^{7+2}=7^9\)

1: 2⋮x
mà x là số tự nhiên
nên x∈{1;2}
2: 2⋮x+1
=>x+1∈{1;-1;2;-2}
=>x∈{0;-2;1;-3}
mà x>=0
nên x∈{0;1}
3: 2⋮x+2
mà x+2>=2(Do x là số tự nhiên)
nên x+2=2
=>x=0
4: 2⋮x-1
=>x-1∈{1;-1;2;-2}
=>x∈{2;0;3;-1}
mà x>=0
nên x∈{0;2;3}
5: 2⋮x-2
=>x-2∈{1;-1;2;-2}
=>x∈{3;1;4;0}
6: 2⋮2-x
=>2⋮x-2
=>x-2∈{1;-1;2;-2}
=>x∈{3;1;4;0}
Bài 1:
2 ⋮ \(x\)(\(x\) ∈ N*)
2 ⋮ \(x\)
⇒ \(x\) ∈ Ư(2) = {-2; -1; 1; 2}
Vì \(x\) ∈ N* nên \(x\) ∈ {1; 2}
Vậy \(x\) ∈ {1; 2}

Bài 5:
a: \(37\cdot146+46\cdot2-46\cdot37\)
\(=37\left(146-46\right)+46\cdot2\)
\(=37\cdot100+92=3700+92=3792\)
b: \(2\cdot5\cdot71+5\cdot18\cdot2+10\cdot11\)
\(=10\cdot71+10\cdot18+10\cdot11\)
\(=10\left(71+18+11\right)=10\cdot100=1000\)
c: \(135+360+65+40\)
=135+65+360+40
=200+400
=600
d: \(27\cdot75+25\cdot27-450\)
\(=27\left(75+25\right)-450\)
=2700-450
=2250
Bài 4:
a: \(32\cdot163+32\cdot837\)
\(=32\cdot\left(163+837\right)\)
\(=32\cdot1000=32000\)
b: \(2\cdot3\cdot4\cdot5\cdot25=2\cdot5\cdot4\cdot25\cdot3=3\cdot10\cdot100=3000\)
c: \(25\cdot27\cdot4=27\cdot100=2700\)
Bài 3:
a: \(128\cdot19+128\cdot41+128\cdot40\)
\(=128\cdot\left(19+41+40\right)=128\cdot100=12800\)
b: \(375+693+625+307\)
=375+625+693+307
=1000+1000
=2000
c: \(37+42-37+22\)
=37-37+42+22
=0+64
=64
d: \(21\cdot32+21\cdot68\)
\(=21\cdot\left(32+68\right)=21\cdot100=2100\)
Bài 2:
a: \(17\cdot85+15\cdot17-120\)
\(=17\left(85+15\right)-120\)
=1700-120
=1580
b: \(189+73+211+127\)
=189+211+73+127
=400+200
=600
c: \(38\cdot73+27\cdot38\)
\(=38\left(73+27\right)=38\cdot100=3800\)
Bài 1:
a: \(28\cdot76+23\cdot28-28\cdot13\)
\(=28\left(76+23-13\right)=28\cdot86=2408\)
b: \(39\cdot50+25\cdot39+75\cdot61\)
\(=39\left(50+25\right)+75\cdot61\)
\(=39\cdot75+75\cdot61=75\left(39+61\right)=75\cdot100=7500\)
c: \(32\cdot163+837\cdot32\)
\(=32\left(163+837\right)=32\cdot1000=32000\)
d: \(63+118+37+82\)
=63+37+118+82
=100+200
=300
\(19.\left(5-3n\right)^2-4=0\)
\(\left(5-3n\right)^2-2^2=0\)
\(\left(5-3n-2\right)\left(5-3n+2\right)=0\)
\(\left(3-3n\right)\left(7-3n\right)=0\)
\(\left[\begin{array}{l}3-3n=0\Rightarrow n=1\\ 7-3n=0\Rightarrow n=\frac73\end{array}\right.\)
vậy \(n\in\left\lbrace1;\frac73\right\rbrace\)
\(20.\left(4^0+3n\right)^3-64=0\)
\(\left(4^0+3n\right)^3=64\)
\(\left(1+3n\right)^3=4^3\)
\(\Rightarrow1+3n=4\Rightarrow n=1\)
vậy n=1
\(21.\left(2^2-3n\right)^4-1=0\)
\(\left(2^2-3n\right)^4=1\)
\(\left[\begin{array}{l}4-3n=1\Rightarrow n=1\\ 4-3n=-1\Rightarrow n=\frac53\end{array}\right.\)
vậy \(n\in\left\lbrace1;\frac53\right\rbrace\)
\(22.2\cdot\left(3-n\right)^2-8=0\)
\(2\cdot\left(3-n\right)^2=8\)
\(\Rightarrow\left(3-n\right)^2=4\)
\(\left[\begin{array}{l}3-n=2\Rightarrow n=1\\ 3-n=-2\Rightarrow n=5\end{array}\right.\)
vậy \(n\in\left\lbrace1;5\right\rbrace\)
\(23.5\cdot\left(3+2n^{}\right)^4=3125\)
\(\left(3+2n^{}\right)^4=625\)
\(\left[\begin{array}{l}3+2n=5\Rightarrow n=1\\ 3+2n=-5\Rightarrow n=-4\end{array}\right.\)
vậy \(n\in\left\lbrace1;-4\right\rbrace\)
\(24.6\cdot\left(n+1\right)^2-54=0\)
\(6\cdot\left(n+1\right)^2=54\)
\(\left(n+1\right)^2=9\)
\(\left[\begin{array}{l}n+1=3\Rightarrow n=2\\ n+1=-3\Rightarrow n=-4\end{array}\right.\)
vậy \(n\in\left\lbrace2;-4\right\rbrace\)
\(25.3\cdot\left(n-1\right)^2-3^2\cdot4=2^2\cdot3\)
\(3\cdot\left(n-1\right)^2-36=12\)
\(3\cdot\left(n-1\right)^2=48\)
\(\left(n-1\right)^2=16\)
\(\left[\begin{array}{l}n-1=4\Rightarrow n=5\\ n-1=-4\Rightarrow n=-3\end{array}\right.\)
vậy \(n\in\left\lbrace5;-3\right\rbrace\)
\(26.5\cdot\left(3n+1\right)^3-4^2\cdot5=2^4\cdot15\)
\(5\cdot\left(3n+1\right)^3-80=240\)
\(5\cdot\left(3n+1\right)^3=320\)
\(\left(3n+1\right)^3=64\)
\(\Rightarrow3n+1=4\Rightarrow n=1\)
vậy n=1