
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 2:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
ta có: BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-125^0=55^0\)
Ta có: BD//Cz
=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)
=>\(\hat{DBC}=180^0-130^0=50^0\)
Ta có: tia BD nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)
=>\(\hat{ABC}=55^0+50^0=105^0\)
Bài 3:
Ax//yy'
=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)
=>\(\hat{yBA}=50^0\)
Cz//yy'
=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)
=>\(\hat{yBC}=40^0\)
Ta có: tia By nằm giữa hai tia BA và BC
=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)
Bài 4:
Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz
BD//Ax
=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)
=>\(\hat{ABD}=180^0-110^0=70^0\)
ta có; tia BD nằm giữa hai tia BA và BC
=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)
=>\(\hat{DBC}=100^0-70^0=30^0\)
Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//Cz
Ta có: BD//Ax
BD//Cz
Do đó: Ax//Cz

a: a//b
=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)
mà \(\hat{A_1}=65^0\)
nên \(\hat{B_3}=65^0\)
b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)
=>\(\hat{B_2}=180^0-65^0=115^0\)
Giải:
a; \(\hat{A_1}\) = \(65^0\) (gt)
\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)
\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)
b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)
\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)
Vậy a; \(\hat{B}_3\) = 65\(^0\)
b; \(\hat{B_2}\) = 115\(^0\)


Bài 1:
1: xx'⊥AD
yy'⊥AD
Do đó: xx'//yy'
2:
Cách 1:
xx'//yy'
=>\(\hat{C_1}=\hat{x^{\prime}BC}\) (hai góc so le trong)
=>\(\hat{C_1}=70^0\)
Cách 2:
ta có: \(\hat{x^{\prime}BC}+\hat{xBC}=180^0\) (hai góc kề bù)
=>\(\hat{xBC}=180^0-70^0=110^0\)
Ta có: xx'//yy'
=>\(\hat{xBC}+\hat{C_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{C_1}=180^0-110^0=70^0\)
Bài 2:
a: \(\hat{ABC}=\hat{n^{\prime}CB}\left(=80^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên mm'//nn'
b: Cách 1:
ta có: \(\hat{xAm}+\hat{mAD}=180^0\) (hai góc kề bù)
=>\(\hat{mAD}=180^0-70^0=110^0\)
Ta có: AB//CD
=>\(\hat{mAD}=\hat{D_1}\) (hai góc so le trong)
=>\(\hat{D_1}=110^0\)
Cách 2:
Ta có: \(\hat{xAm}=\hat{BAD}\) (hai góc đối đỉnh)
mà \(\hat{xAm}=70^0\)
nên \(\hat{BAD}=70^0\)
Ta có: AB//CD
=>\(\hat{BAD}+\hat{D_1}=180^0\) (hai góc trong cùng phía)
=>\(\hat{D_1}=180^0-70^0=110^0\)



Gọi ba phần được chia lần lượt là x,y,z
Ba phần được chia theo tỉ lệ là \(0,5:1\frac23:2\frac14=\frac12:\frac53:\frac94\) nên \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}\)
Đặt \(\frac{x}{\frac12}=\frac{y}{\frac53}=\frac{z}{\frac94}=k\)
=>\(x=\frac12k;y=\frac53k;z=\frac94k\)
Tổng bình phương của ba phần được chia là 4660 nên ta có:
\(x^2+y^2+z^2=4660\)
=>\(\left(\frac12k\right)^2+\left(\frac53k\right)^2+\left(\frac94k\right)^2=4660\)
=>\(\frac14k^2+\frac{25}{9}k^2+\frac{81}{16}k^2=4660\)
=>\(k^2=576\)
=>\(\left[\begin{array}{l}k=24\\ k=-24\end{array}\right.\)
TH1: k=24
=>\(\begin{cases}x=\frac12\cdot24=12\\ y=\frac53\cdot24=40\\ z=\frac94\cdot24=54\end{cases}\)
A=x+y+z=12+40+54=62+54=116
TH2: k=-24
=>\(\begin{cases}x=\frac12\cdot\left(-24\right)=12\\ y=\frac53\cdot\left(-24\right)=40\\ z=\frac94\cdot\left(-24\right)=54\end{cases}\)
A=x+y+z=-12-40-54=-116

Các cặp góc so le trong là: \(\hat{A_1};\hat{B_7}\) ; \(\hat{A_4};\hat{B_6}\)
Các cặp góc đồng vị là: \(\hat{A_2};\hat{B_6}\) ; \(\hat{A_1};\hat{B_5}\) ; \(\hat{A_3};\hat{B_7}\); \(\hat{A_4};\hat{B_8}\)
Các cặp góc trong cùng phía là: \(\hat{A_1};\hat{B_6}\) ; \(\hat{A_4};\hat{B_7}\)
Các góc ngoài cùng phía là: \(\hat{A_3};\hat{B_8}\) ; \(\hat{A_2};\hat{B_5}\)
Các góc so le ngoài là: \(\hat{A_2};\hat{B_8}\) ; \(\hat{A_3};\hat{B_5}\)
ib face mik mik giải cho : Hita henry(avartar conan)