
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: ta có: EI⊥BF
AC⊥BF
Do đó: EI//AC
=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)
mà \(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)
nên \(\hat{KBE}=\hat{IEB}\)
Xét ΔKBE vuông tại K và ΔIEB vuông tại I có
BE chung
\(\hat{KBE}=\hat{IEB}\)
Do đó: ΔKBE=ΔIEB
=>EK=BI
b: Điểm D ở đâu vậy bạn?

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

a) Số tiền Linh dùng mua bút bi:
50000 - 20000 = 30000 (đồng)
Giá tiền mỗi bút chì sau khi giảm:
x - 1000 (đồng)
Phân thức biểu thị số bút chì Linh mua được:
Phân thức biểu thị số bút bi Linh mua được:
b) Với x = 3000, số bút bi Linh mua được:
30000 : 3000 = 10 (bút)

Bài 4:
AB//CD
=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)
mà \(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)
nên \(\hat{DAK}=\hat{DKA}\)
=>DA=DK
Ta có: DK+KC=DC
DA+BC=DC
mà DK=DA
nên CK=CB
=>ΔCKB cân tại C
=>\(\hat{CKB}=\hat{CBK}\)
mà \(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)
nên \(\hat{ABK}=\hat{CBK}\)
=>BK là phân giác của góc ABC
Bài 2:
a: Xét ΔDAB có
K,E lần lượt là trung điểm của DA,DB
=>KE là đường trung bình của ΔDAB
=>KE//AB và \(KE=\frac{AB}{2}\)
Xét ΔCAB có
F,G lần lượt là trung điểm của CA,CB
Do đó: FG là đường trung bình của ΔCAB
=>FG//AB và \(FG=\frac{AB}{2}\)
Xét hình thang ABCD có
K,G lần lượt là trung điểm của AD,BC
=>KG là đường trung bình của hình thang ABCD
=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)
Ta có: FG//AB
KG//AB
FG,KG có điểm chung là G
Do đó: F,G,K thẳng hàng(1)
ta có: KE//AB
KG//AB
KE,KG có điểm chung là K
Do đó: K,E,G thẳng hàng(2)
Từ (1),(2) suy ra K,E,F,G thẳng hàng
b: Ta có: KE+EF+FG=KG
=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)
=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có
\(\hat{DBE}\) chung
Do đó: ΔBDE~ΔBCD
b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có
\(\hat{FBD}\) chung
Do đó: ΔBFD~ΔBDA
=>\(\frac{BF}{BD}=\frac{BD}{BA}\)
=>\(BD^2=BF\cdot BA\)
c: ΔBDE~ΔBCD
=>\(\frac{BD}{BC}=\frac{BE}{BD}\)
=>\(BD^2=BE\cdot BC\)
=>\(BE\cdot BC=BF\cdot BA\)
=>\(\frac{BE}{BA}=\frac{BF}{BC}\)
Xét ΔBEF và ΔBAC có
\(\frac{BE}{BA}=\frac{BF}{BC}\)
góc EBF chung
Do đó: ΔBEF~ΔBAC
=>\(\hat{BFE}=\hat{BCA}\)

Gọi I là trung điểm của DE
=>I là tâm đường tròn đường kính DE
ĐƯờng trung trực của BC cắt BC,AC,AB lần lượt tại M,D,E
=>MB=MC; EB=EC; DB=DC
MB=MC nên M la trung điểm của BC
ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MB
=>ΔMAB cân tại M
=>\(\hat{MAB}=\hat{MBA}\)
ΔAED vuông tại A
mà AI là đường trung tuyến
nên IA=IE
=>ΔIAE cân tại I
=>\(\hat{IAE}=\hat{IEA}\)
mà \(\hat{IEA}=\hat{MEB}\) (hai góc đối đỉnh)
nên \(\hat{IAE}=\hat{MEB}\)
Ta có: DM là đường trung trực của BC
=>DM⊥BC tại M
Xét tứ giác AEMC có \(\hat{CAE}+\hat{CME}+\hat{ACM}+\hat{AEM}=360^0\)
=>\(\hat{ACM}+\hat{AEM}=360^0-90^0-90^0=180^0\)
mà \(\hat{AEM}+\hat{BEM}=180^0\) (hai góc kề bù)
nên \(\hat{BEM}=\hat{ACB}\)
\(\hat{MAI}=\hat{MAE}+\hat{IAE}=\hat{MAB}+\hat{MEB}\)
\(=\hat{MBA}+\hat{MCA}=90^0\)
=>AM⊥IA tại A
ΔAED vuông tại A
mà AI là đường trung tuyến
nên IA=IE=ID
=>A nằm trên (I)
Xét (I) có
IA là bán kính
AM⊥ AI tại A
Do đó: AM là tiếp tuyến tại A của (I)
=>AM là tiếp tuyến của đường tròn đường kính DE

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)
nên APMQ là hình chữ nhật
ảo lòi
khó