K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)

2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)

\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)

\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)

4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)

5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)

7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)

8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)

10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)

11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

13 tháng 8

a) Số tiền Linh dùng mua bút bi:

50000 - 20000 = 30000 (đồng)

Giá tiền mỗi bút chì sau khi giảm:

x - 1000 (đồng)

Phân thức biểu thị số bút chì Linh mua được:

loading...

Phân thức biểu thị số bút bi Linh mua được:

loading...

b) Với x = 3000, số bút bi Linh mua được:

30000 : 3000 = 10 (bút)

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

a: Xét ΔBDE vuông tại E và ΔBCD vuông tại D có

\(\hat{DBE}\) chung

Do đó: ΔBDE~ΔBCD

b: Xét ΔBFD vuông tại F và ΔBDA vuông tại D có

\(\hat{FBD}\) chung

Do đó: ΔBFD~ΔBDA

=>\(\frac{BF}{BD}=\frac{BD}{BA}\)

=>\(BD^2=BF\cdot BA\)

c: ΔBDE~ΔBCD

=>\(\frac{BD}{BC}=\frac{BE}{BD}\)

=>\(BD^2=BE\cdot BC\)

=>\(BE\cdot BC=BF\cdot BA\)

=>\(\frac{BE}{BA}=\frac{BF}{BC}\)

Xét ΔBEF và ΔBAC có

\(\frac{BE}{BA}=\frac{BF}{BC}\)

góc EBF chung

Do đó: ΔBEF~ΔBAC

=>\(\hat{BFE}=\hat{BCA}\)


Gọi I là trung điểm của DE
=>I là tâm đường tròn đường kính DE

ĐƯờng trung trực của BC cắt BC,AC,AB lần lượt tại M,D,E

=>MB=MC; EB=EC; DB=DC

MB=MC nên M la trung điểm của BC

ΔABC vuông tại A

mà AM là đường trung tuyến

nên MA=MB

=>ΔMAB cân tại M

=>\(\hat{MAB}=\hat{MBA}\)

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE

=>ΔIAE cân tại I

=>\(\hat{IAE}=\hat{IEA}\)

\(\hat{IEA}=\hat{MEB}\) (hai góc đối đỉnh)

nên \(\hat{IAE}=\hat{MEB}\)

Ta có: DM là đường trung trực của BC

=>DM⊥BC tại M

Xét tứ giác AEMC có \(\hat{CAE}+\hat{CME}+\hat{ACM}+\hat{AEM}=360^0\)

=>\(\hat{ACM}+\hat{AEM}=360^0-90^0-90^0=180^0\)

\(\hat{AEM}+\hat{BEM}=180^0\) (hai góc kề bù)

nên \(\hat{BEM}=\hat{ACB}\)

\(\hat{MAI}=\hat{MAE}+\hat{IAE}=\hat{MAB}+\hat{MEB}\)

\(=\hat{MBA}+\hat{MCA}=90^0\)

=>AM⊥IA tại A

ΔAED vuông tại A

mà AI là đường trung tuyến

nên IA=IE=ID

=>A nằm trên (I)

Xét (I) có

IA là bán kính

AM⊥ AI tại A

Do đó: AM là tiếp tuyến tại A của (I)

=>AM là tiếp tuyến của đường tròn đường kính DE

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)

nên APMQ là hình chữ nhật