K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Kẻ IH là phân giác của góc AIC(H\(\in\)AC)

Xét ΔBAC có \(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^0\)

=>\(\widehat{BAC}+\widehat{BCA}=180^0-\widehat{ABC}=180^0-60^0=120^0\)

=>\(2\left(\widehat{IAC}+\widehat{ICA}\right)=120^0\)

=>\(\widehat{IAC}+\widehat{ICA}=60^0\)

Xét ΔAIC có \(\widehat{AIC}+\widehat{IAC}+\widehat{ICA}=180^0\)

=>\(\widehat{AIC}=180^0-60^0=120^0\)

IH là phân giác của góc AIC

=>\(\widehat{AIH}=\widehat{CIH}=\dfrac{\widehat{AIC}}{2}=\dfrac{120^0}{2}=60^0\left(1\right)\)

Ta có: \(\widehat{AIC}+\widehat{AIN}=180^0\)(hai góc kề bù)

=>\(\widehat{AIN}=180^0-120^0=60^0\left(2\right)\)

Ta có: \(\widehat{AIN}=\widehat{CIM}\)(hai góc đối đỉnh)

mà \(\widehat{AIN}=60^0\)

nên \(\widehat{CIM}=60^0\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{NIA}=\widehat{HIA}=\widehat{HIC}=\widehat{MIC}\)

Xét ΔINA và ΔIHA có

\(\widehat{NIA}=\widehat{HIA}\left(=60^0\right)\)

IA chung

\(\widehat{NAI}=\widehat{HAI}\)

Do đó: ΔINA=ΔIHA

=>IN=IH(4)

Xét ΔIHC và ΔIMC có

\(\widehat{HIC}=\widehat{MIC}\)

IC chung

\(\widehat{HCI}=\widehat{MCI}\)

Do đó: ΔIHC=ΔIMC

=>IH=IM(5)

TỪ (4),(5) suy ra IN=IM

11 tháng 4

Giải giúp bài này.CMR IM=IN

Bài 2:

a: Xét ΔMAB và ΔMCD có

MA=MC

\(\hat{AMB}=\hat{CMD}\) (hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>AB=CD

ΔMAB=ΔMCD

=>\(\hat{MAB}=\hat{MCD}\)

=>\(\hat{MCD}=90^0\)

=>CD⊥CA

b: Xét ΔDCB có CB+CD>BD

mà CD=AB

nên CB+AB>BD

=>BA+BC>2BM

c: Ta có: ΔABC vuông tại A

=>BC là cạnh huyền

=>BC là cạnh lớn nhất trong ΔABC

=>BC>AB

mà AB=CD

nên BC>CD

Xét ΔCBD có CB>CD
ma \(\hat{CDB};\hat{CBD}\) lần lượt là góc đối diện của các cạnh CB,CD

nên \(\hat{CDB}>\hat{CBD}\)

\(\hat{CDB}=\hat{ABD}\) (ΔMAB=ΔMCD)

nên \(\hat{ABD}>\hat{CBD}\)

Bài 3:

a: Xét ΔAEB vuông tại E và ΔADC vuông tại D có

AB=AC

\(\hat{EAB}\) chung

Do đó: ΔAEB=ΔADC

=>AE=AD

=>ΔAED cân tại A

b: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

AD=AE

Do đó: ΔADH=ΔAEH

=>\(\hat{DAH}=\hat{EAH}\)

=>AH là phân giác của góc DAE

c: Xét ΔABC có \(\frac{AD}{AB}=\frac{AE}{AC}\)

nên DE//BC

d: Ta có: ΔADH=ΔAEH

=>HD=HE

ΔABE=ΔACD

=>BE=CD

Ta có: BE=BH+HE

CD+CH+HD

ma BE=CD va HE=HD

nên HB=HC

=>H nằm trên đường trung trực của BC(1)

ta có: AB=AC

=>A nằm trên đường trung trực của BC(2)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,H,M thẳng hàng

Bài 8:

Chu vi đáy là:

3,5+3,5+3+6=7+9=16(cm)

Diện tích xung quanh là: \(16\cdot11,5=184\left(\operatorname{cm}^2\right)\)

Bài 9:

Diện tích đáy là:

\(S=\frac12\cdot7\cdot24=12\cdot7=84\left(m^2\right)\)

Thể tích của khối bê tông là:

\(84\cdot22=1848\left(m^3\right)\)

Số tiền phải trả là:

\(1848\cdot2500000=4620000000\) (đồng)

Ta có: tia CD nằm giữa hai tia CF và CB

=>\(\hat{BCF}=\hat{BCD}+\hat{FCD}=20^0+50^0=70^0\)

Ta có: \(\hat{BCF}=\hat{ABC}\left(=70^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CF
Ta có: \(\hat{EDC}+\hat{DCF}=130^0+50^0=180^0\)

mà hai góc này là hai góc ở vị trí trong cùng phía

nên ED//CF

Ta có: AB//CF

ED//CF

Do đó: AB//DE

20 tháng 8

cảm ơn !

7 tháng 9

Bài 7.

Số học sinh lớp 6A là:

120 x 35 : 100 = 42 (học sinh)

Số học sinh lớp 6C là:

120 x 3/10 = 36 (học sinh)

Số học sinh lớp 6B là:

120 - 42 - 36 = 42 (học sinh)

Đáp số: 42 học sinh

Bài 8.

Số học sinh trung bình là:

1200 x 5/8 = 750 (học sinh)

Số học sinh khá là:

1200 x 1/3 = 400 (học sinh)

Số học sinh giỏi là:

1200 - 750 - 400 = 50 (học sinh)

Đáp số: 50 học sinh

Bài 9.

a) Số học sinh giỏi là:

40 x 1/5 = 8 (học sinh)

Số học sinh trung bình là:

40 x 3/8 = 15 (học sinh)

Số học sinh khá là:

40 - 8 - 15 = 17 (học sinh)

b) Tỉ số phần trăm số học sinh Khá so với cả lớp là:

17 : 40 x 100 = 42,5%

Đáp số: ...

Bài 6: Số học sinh giỏi là \(48\cdot\frac16=8\) (bạn)

Số học sinh trung bình là \(48\cdot25\%=12\) (bạn)

Số học sinh khá là 48-8-12=40-12=28(bạn)

Bài 5:

Thể tích xăng còn lại chiếm:

\(100\%-\frac{3}{10}-40\%=60\%-30\%=30\%\) (tổng số xăng)

Thể tích xăng còn lại là:

\(60\cdot30\%=18\left(lít\right)\)

Bài 2:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

ta có: BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-125^0=55^0\)

Ta có: BD//Cz

=>\(\hat{DBC}+\hat{BCz}=180^0\) (hai góc trong cùng phía)

=>\(\hat{DBC}=180^0-130^0=50^0\)

Ta có: tia BD nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{DBA}+\hat{DBC}\)

=>\(\hat{ABC}=55^0+50^0=105^0\)

Bài 3:

Ax//yy'

=>\(\hat{xAB}=\hat{yBA}\) (hai góc so le trong)

=>\(\hat{yBA}=50^0\)

Cz//yy'

=>\(\hat{yBC}=\hat{zCB}\) (hai góc so le trong)

=>\(\hat{yBC}=40^0\)

Ta có: tia By nằm giữa hai tia BA và BC

=>\(\hat{ABC}=\hat{yBA}+\hat{yBC}=40^0+50^0=90^0\)

Bài 4:

Qua B, kẻ tia BD nằm giữa hai tia BA và BC sao cho BD//Ax//Cz

BD//Ax

=>\(\hat{xAB}+\hat{ABD}=180^0\) (hai góc trong cùng phía)

=>\(\hat{ABD}=180^0-110^0=70^0\)

ta có; tia BD nằm giữa hai tia BA và BC

=>\(\hat{DBA}+\hat{DBC}=\hat{ABC}\)

=>\(\hat{DBC}=100^0-70^0=30^0\)

Ta có: \(\hat{DBC}=\hat{zCB}\left(=30^0\right)\)

mà hai góc này là hai góc ở vị trí so le trong

nên BD//Cz

Ta có: BD//Ax

BD//Cz

Do đó: Ax//Cz



a: a//b

=>\(\hat{A_1}=\hat{B_3}\) (hai góc so le trong)

\(\hat{A_1}=65^0\)

nên \(\hat{B_3}=65^0\)

b: Ta có: \(\hat{B}_3+\hat{B_2}=180^0\) (hai góc kề bù)

=>\(\hat{B_2}=180^0-65^0=115^0\)

11 tháng 8

Giải:

a; \(\hat{A_1}\) = \(65^0\) (gt)

\(\hat{A_1}\) = \(\hat{A_3}\) = 65\(^0\)(đối đỉnh)

\(\hat{A_3}\) = \(\hat{B_3}\) = \(65^0\) (slt)

b; \(\hat{B_2}\) + \(\hat{B_3}\) = 180\(^0\) (hai góc kề bù)

\(\hat{B_2}\) = 180\(^0\) - \(\hat{B_3}\)

\(\hat{B_2}\) = 180\(^0\) - 65\(^0\) = 115\(^0\)

Vậy a; \(\hat{B}_3\) = 65\(^0\)

b; \(\hat{B_2}\) = 115\(^0\)







NV
1 tháng 9

4.

Ta có: \(S=2^1+3^{4.1+1}+4^{4.2+1}+\cdots+2024^{4.2002+1}\)

Do tính chất lũy thừa bậc 4n+1 của 1 số có tận cùng giống số đó, nên S có cùng chữ số tận cùng với tổng:

\(S_1=2+3+4+\cdots+2024=\frac{2024.2025}{2}-1=2049299\)

Vậy S có tận cùng bằng 9