Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
Bài 3:
\(a.\dfrac{3x+2}{x-3}=\dfrac{3x-9+11}{x-3}=\dfrac{3\left(x-3\right)+11}{x-3}=3+\dfrac{11}{x-3}\)
Để bt nguyên thì 11 ⋮ x - 3
=> x - 3 ∈ Ư(11) = {1; -1; 11; -11}
=> x ∈ {4; 2; 14; -8}
\(b.\dfrac{x-2}{3x-2}\) nguyên \(\Rightarrow\dfrac{3\left(x-2\right)}{3x-2}=\dfrac{3x-6}{3x-2}=\dfrac{3x-2-4}{3x-2}=1-\dfrac{4}{3x-2}\)
Để bt nguyên thì: 4 ⋮ 3x - 2
=> 3x - 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
=> 3x ∈ {3; 1; 4; 0; 5; -2}
=> x ∈ {1; `1/3`; `4/3`; 0;`5/3`;`-2/3`}
Mà: x nguyên => x ∈ {1;0}
Bài 4:
\(A=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)
=>\(3A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)
=>\(3A+A=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3+3^{100}-3^{99}+...+3^2-3+1\)
=>\(4A=3^{101}+1\)
=>\(A=\dfrac{3^{101}+1}{4}\)