Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
\(S=\left\{1,\dfrac{4}{11}\right\}\)
Đặt C(x)=0
\(\Leftrightarrow11x^2-15x+4=0\)
\(\Leftrightarrow11x^2-11x-4x+4=0\)
\(\Leftrightarrow11x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(11x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\11x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\11x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{4}{11}\end{matrix}\right.\)
Vậy: Nghiệm của đa thức \(C\left(x\right)=11x^2-15x+4\) là 1 và \(\dfrac{4}{11}\)
Ta có: x+y+1=0
nên x+y=-1
Ta có: \(N=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)
\(=\left(x+y\right)\left(x^2-y^2\right)+\left(x^2-y^2\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\left(x+y+1\right)+2\left(x+y\right)+3\)
\(=\left(x^2-y^2\right)\cdot0+2\cdot\left(-1\right)+3\)
=-2+3=1
Đáp án:
P=\(\frac{2}{3}\)
Giải thích các bước giải:
x:y:z=5:4:3
⇒ x5x5 =y4y4 ⇒y= 4x54x5
⇒ x5x5 =z3z3 ⇒z= 3x53x5
Thay vào biểu thức ta được:
P= x+2y−3zx−2y+3zx+2y−3zx−2y+3z= x+2.4x5−33x5x−2.4x5+33x5x+2.4x5−33x5x−2.4x5+33x5 =4x56x54x56x5 =2323
Vậy P=\(\frac{2}{3}\)
# Chúc bạn học tốt!
Vì x,y,z tỉ lệ với các số 5,4,3 nên ta có : \(x:y:z=5:4:3\) hoặc \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Ta lại có : \(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}\)
Đặt \(\frac{x}{5}=\frac{2y}{8}=\frac{3z}{9}=k\Rightarrow\hept{\begin{cases}x=5k\\2y=8k\\3z=9k\end{cases}}\)
\(P=\frac{x+2y-3z}{x-2y+3z}=\frac{5k+8k-9k}{5k-8k+9k}=\frac{4k}{6k}=\frac{4}{6}=\frac{2}{3}\)
Vậy \(P=\frac{2}{3}\)
a: \(1,25:\left(\dfrac{1}{2}-1\dfrac{1}{2}\right)-1,75\cdot\left(-20\%\right)\)
\(=\dfrac{5}{4}:\left(-1\right)-\dfrac{7}{4}\cdot\dfrac{-1}{5}\)
\(=-\dfrac{5}{4}+\dfrac{7}{20}=\dfrac{-25}{20}+\dfrac{7}{20}=-\dfrac{18}{20}=-\dfrac{9}{10}\)
b: \(\left(2,2+40\%\right):\left(\dfrac{1}{2}-1,25:20\%\right)\)
\(=\left(2,2+0,4\right):\left(0,5-1,25:0,2\right)\)
\(=2,6:\left(-5,75\right)=-\dfrac{52}{115}\)
c: \(\left[\dfrac{3}{4}-1,25:\left(-1\dfrac{1}{2}\right)\right]:\left(3,75-\dfrac{1}{2}:0,25\right)\)
\(=\left(\dfrac{3}{4}-\dfrac{5}{4}:\dfrac{-3}{2}\right):\left(\dfrac{15}{4}-\dfrac{1}{2}:\dfrac{1}{4}\right)\)
\(=\left(\dfrac{3}{4}+\dfrac{5}{4}\cdot\dfrac{2}{3}\right):\left(\dfrac{15}{4}-2\right)\)
\(=\left(\dfrac{3}{4}+\dfrac{5}{6}\right):\dfrac{7}{4}=\left(\dfrac{9}{12}+\dfrac{10}{12}\right):\dfrac{7}{4}\)
\(=\dfrac{19}{12}\cdot\dfrac{4}{7}=\dfrac{19}{21}\)
d: \(0,75\cdot\dfrac{-17}{13}-\dfrac{3}{4}\cdot\dfrac{-4}{13}-1,25\)
\(=0,75\cdot\dfrac{-17}{13}+\dfrac{3}{4}\cdot\dfrac{4}{13}-1,25\)
\(=0,75\cdot\left(-\dfrac{17}{13}+\dfrac{4}{13}\right)-1,25\)
=-0,75-1,25
=-2