K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 

a: Xét ΔOAB và ΔOCD có

\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)

\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)

Do đó: ΔOAB~ΔOCD

=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)

=>\(\dfrac{OA+OC}{OC}=\dfrac{OB+OD}{OD}\)

=>\(\dfrac{AC}{OC}=\dfrac{BD}{OD}\)

=>\(\dfrac{DO}{BD}=\dfrac{CO}{CA}\)

b: \(AC^2-BD^2\)

\(=AD^2+DC^2-\left(AB^2+AD^2\right)\)

\(=AD^2+DC^2-AB^2-AD^2\)

\(=DC^2-AD^2\)