Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo:
Cho bất phương trình x2-6x +2(m+2)|x-3| +m2 +4m +12 >0có bao nhiêu giá trị nguyên của m ϵ [-10;10] để bất phương tình... - Hoc24
Câu a bạn coi lại đề
b. ĐKXĐ: \(x\ge0;x\ne1\)
\(\Leftrightarrow\dfrac{\sqrt{2x+1}+\sqrt{3x}}{1-x}=\dfrac{\sqrt{3x+2}}{1-x}\)
\(\Leftrightarrow\sqrt{2x+1}+\sqrt{3x}=\sqrt{3x+2}\)
\(\Leftrightarrow5x+1+2\sqrt{3x\left(2x+1\right)}=3x+2\)
\(\Leftrightarrow2\sqrt{6x^2+3x}=1-2x\) (\(x\le\dfrac{1}{2}\) )
\(\Leftrightarrow4\left(6x^2+3x\right)=4x^2-4x+1\)
\(\Leftrightarrow20x^2+16x-1=0\)
\(\Rightarrow x=\dfrac{-4+\sqrt{21}}{10}\)
\(\Leftrightarrow\dfrac{b^2+c^2-a^2}{2abc}+\dfrac{a^2+c^2-b^2}{2abc}+\dfrac{a^2+b^2-c^2}{2abc}=\dfrac{a}{bc}\)
\(\Leftrightarrow\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{a}{bc}\)
\(\Leftrightarrow a^2+b^2+c^2=2a^2\)
\(\Leftrightarrow a^2=b^2+c^2\)
\(\Rightarrow\) Tam giác vuông tại A theo Pitago đảo
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-x^2y-7\left(x-y\right)=x^2+y^2+2xy+4\\3x^2+y^2-8\left(x-y\right)+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-7\right)\left(x-y\right)-x^2-2xy=y^2+4\\3x^2-8\left(x-y\right)=-y^2-4\end{matrix}\right.\)
Cộng vế:
\(\left(x^2-7\right)\left(x-y\right)-8\left(x-y\right)+2x^2-2xy=0\)
\(\Leftrightarrow\left(x^2-15\right)\left(x-y\right)+2x\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+2x-15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x^2+2x-15=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
\(f\left(x\right)=\left(m+1\right)x^2+mx+m\)
TH1: \(m+1=0\Leftrightarrow m=-1\Rightarrow f\left(x\right)>0,\forall x\in R\)
TH2: \(m+1\ne0\Leftrightarrow m\ne-1\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}\Delta=-3m^2-4m< 0\\m+1< 0\end{matrix}\right.\Leftrightarrow m< -\frac{4}{3}\)
Đ/s: \(m< -\frac{4}{3};m=-1\)
ĐKXĐ: n>=3
\(A^2_n-C^3_n=10\)
=>\(\dfrac{n!}{\left(n-2\right)!}-\dfrac{n!}{\left(n-3\right)!\cdot3!}=10\)
=>\(n\left(n-1\right)-\dfrac{n\left(n-1\right)\left(n-2\right)}{6}=10\)
=>\(6n\left(n-1\right)-n\left(n-1\right)\left(n-2\right)=60\)
=>\(n\left(n-1\right)\left(6-n+2\right)=60\)
=>\(\left(n^2-n\right)\left(-n+8\right)=60\)
=>\(-n^3+8n^2+n^2-8n-60=0\)
=>\(n^3-9n^2+8n+60=0\)
=>(n-5)(n-6)(n+2)=0
=>\(\left[{}\begin{matrix}n=5\left(nhận\right)\\n=6\left(loại\right)\\n=-2\left(loại\right)\end{matrix}\right.\)
Nhị thức sẽ trở thành là \(\left(x^2-\dfrac{2}{x^3}\right)^5\)
SHTQ là \(C^k_5\cdot\left(x^2\right)^{5-k}\cdot\left(-\dfrac{2}{x^3}\right)^k\)
\(=C^k_5\cdot x^{10-2k}\cdot\dfrac{\left(-2\right)^k}{x^{3k}}\)
\(=C^k_5\cdot\left(-2\right)^k\cdot x^{10-5k}\)
Hệ số của số hạng chứa x5 tương ứng với 10-5k=5
=>k=1
=>Hệ số là \(C^1_5\cdot\left(-2\right)^1=5\cdot\left(-2\right)=-10\)
\(A_n^2-C_n^3=10\)
\(\Leftrightarrow\dfrac{n!}{\left(n-2\right)!}-\dfrac{n!}{3!.\left(n-3\right)!}=10\)
\(\Leftrightarrow n\left(n-1\right)-\dfrac{n\left(n-1\right)\left(n-2\right)}{6}=10\)
\(\Leftrightarrow-n^3+9n^2-8n-60=0\Rightarrow\left[{}\begin{matrix}n=-2\left(loại\right)\\n=6\left(loại\right)\\n=5\end{matrix}\right.\)
\(\Rightarrow\left(x^2-\dfrac{2}{x^3}\right)^5=\left(x^2-2.x^{-3}\right)^5\)
SHTQ trong khai triển:
\(C_5^k.\left(x^2\right)^k.\left(-2.x^{-3}\right)^{5-k}=C_5^k.\left(-2\right)^{5-k}.x^{5k-15}\)
Số hạng chứa \(x^5\) thỏa mãn: \(5k-15=5\)
\(\Rightarrow k=4\)
Hệ số: \(C_5^4.\left(-2\right)^{5-4}=-10\)