K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5

   Đây là dạng toán nâng cao chuyên đề vòi nước. Cấu trúc thi chuyên thi học sinh giỏi các cấp. Hôm nay, Olm.vn sẽ hướng dẫn các em giải chi tiết dạng này như sau:

                                Giải:

 Gấp rưỡi là gấp \(\dfrac{3}{2}\), vậy lượng nước nóng bằng \(\dfrac{3}{2}\) lượng nước lạnh khi bể đầy.

    Khi bể đầy lượng nước nóng bằng: 3 : (3 + 2) = \(\dfrac{3}{5}\) (bể)

   Khi bể đầy lượng nước lạnh bằng: 1 - \(\dfrac{3}{5}\) = \(\dfrac{2}{5}\) (bể)

   Cứ một phút vòi lạnh chảy được: 1 : 17 = \(\dfrac{1}{17}\) (bể)

   Thời gian vòi nước lạnh chảy được \(\dfrac{2}{5}\) bể là: \(\dfrac{2}{5}\) : \(\dfrac{1}{17}\) = 6,8 (phút)

Cứ một phút vòi nóng chảy được: 1 : \(23\) = \(\dfrac{1}{23}\) (bể)

Thời gian vòi nước nóng chảy được \(\dfrac{3}{5}\) bể là: \(\dfrac{3}{5}\) : \(\dfrac{1}{23}\) = 13,8 (phút)

Để khi bể đầy, lượng nước nóng gấp rưỡi lượng nước lạnh. Nếu mở vòi nước nóng trước thì cần mở vòi lạnh sau:

                        13,8 phút - 6,8 phút  = 7 phút

Kết luận. Nếu mở vòi nước nóng trước thì cần mở vòi lạnh sau 7 phút, để khi bể đầy lượng nước nóng gấp rưỡi lượng nước lạnh. 

  

29 tháng 12 2022

C.75 min

19 tháng 7 2023

M=((x+3)2x29189x2+(x3)2x29):2x+3

27 tháng 1

chịu

 

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

11 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)

\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)

\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)

\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)

\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)

\(=25+\dfrac{25}{51}\)

\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)

30 tháng 1 2023

sai gòi

 

 

11 tháng 3 2021

Giả sử tồn tại n thoả mãn đề bài.

Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.

Do đó \(n^3+2018n⋮4\).

Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).

Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.

Vậy không tồn tại n thoả mãn đề bài.

 

5 tháng 3 2022

-8/12= -2/3

15/-60= 1/-4

-16/-72= 2/9

35/14.15= 1/6

6 tháng 5 2022

-8/12 rút gọn bằng-2/3; 15/-60 =-1/4; -16/-72=2/9;35/14.15=1/6

16 tháng 12 2023

Phần bể chưa có nước bằng:

    1 - \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) (thể tích bể)

Bể sẽ đầy sau:

   \(\dfrac{3}{4}\) : \(\dfrac{1}{8}\) = 6 (giờ)

Đs...

3 tháng 6 2022

Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4

Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9

+) Với p = (...1), ta có: p4n=(...1)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...3), ta có: p4n=(...3)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...7), ta có: p4n=(...7)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5

20 tháng 2 2021
sao ban ia da quan
20 tháng 2 2021

            a + 3 xa + 2018 ( a N )

vậy x thuộc (a+3;a+4;a+5;a+6;...;a+2018)

tổng:

a+3+a+4+a+5+a+6+a+7+...+a+2018

=a*2016+3+4+5+6+7+...+2018

=a*2016+(2018+3)*2016:2

-----đến đây cậu làm đc ùi-mik lười lắm ------