K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu III:

1: ĐKXĐ: y>-3/2

\(\left\{{}\begin{matrix}2\left|x\right|+\dfrac{1}{\sqrt{2y+3}}=11\\-\left|x\right|+\dfrac{3}{\sqrt{2y+3}}=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2\left|x\right|+\dfrac{1}{\sqrt{2y+3}}=11\\-2\left|x\right|+\dfrac{6}{\sqrt{2y+3}}=-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{7}{\sqrt{2y+3}}=7\\2\left|x\right|+\dfrac{1}{\sqrt{2y+3}}=11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{2y+3}=1\\2\left|x\right|=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2y+3=1\\\left|x\right|=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x\in\left\{5;-5\right\}\end{matrix}\right.\left(nhận\right)\)

2: a: Phương trình hoành độ giao điểm là:

\(2x^2=x+m^2+6\)

=>\(2x^2-x-m^2-6=0\)

\(a\cdot c=2\cdot\left(-m^2-6\right)=-2m^2-12< =-12< 0\forall m\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

Câu IV:

2: Ta có: HQ//AC

BE\(\perp\)AC

Do đó: QH\(\perp\)BE tại H

Ta có: HP//AB

CF\(\perp\)AB

Do đó: HP\(\perp\)CF tại H

Xét ΔHQB vuông tại Q và ΔHPC vuông tại P có

\(\widehat{QBH}=\widehat{PCH}\left(=90^0-\widehat{BAE}\right)\)

Do đó: ΔHQB~ΔHPC

Gọi K là giao điểm của AO với (O)

=>AK là đường kính của (O)

Xét (O) có

ΔACK nội tiếp

AK là đường kính

Do đó: ΔACK vuông tại C

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AKC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AKC}\)

Xét ΔADB vuông tại D và ΔACK vuông tại C có

\(\widehat{ABD}=\widehat{AKC}\)

Do đó: ΔADB~ΔACK

=>\(\widehat{BAD}=\widehat{KAC}\)

=>\(\widehat{BAD}=\widehat{OAC}\)