K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 2

6.1

\(\frac{3}{8}-\frac{4}{5}-\frac{-17}{40}=\frac{15}{40}-\frac{32}{40}+\frac{17}{40}=\frac{15+17-32}{40}=0\)

6.2

\(\frac{3}{4}-\frac{16}{32}+\frac{4}{-3}=\frac{9}{12}-\frac{6}{12}-\frac{16}{12}=\frac{9-6-16}{12}=\frac{-13}{12}\)

6.3

\(\frac{-4}{7}+\frac{2}{3}.\frac{-9}{14}=\frac{-4}{7}-\frac{3}{7}=-\frac{7}{7}=-1\)

6.4

\(8\frac{2}{7}-(3\frac{4}{9}+4\frac{2}{7})=8+\frac{2}{7}-(7+\frac{4}{9}+\frac{2}{7})=1-\frac{4}{9}=\frac{5}{9}\)

6.5

\((\frac{2}{3}-1\frac{1}{2}):\frac{4}{3}+\frac{1}{2}=\frac{-5}{6}.\frac{3}{4}+\frac{1}{2}=\frac{-5}{8}+\frac{1}{2}=\frac{-5}{8}+\frac{4}{8}=\frac{-1}{8}\)

6.6

\(\frac{-5}{13}+\frac{2}{5}+\frac{-8}{13}+\frac{3}{5}-\frac{3}{7}\\ =(\frac{-5}{13}+\frac{-8}{13})+(\frac{2}{5}+\frac{3}{5})-\frac{3}{7}\\ =-1+1-\frac{3}{7}=\frac{-3}{7}\)

AH
Akai Haruma
Giáo viên
26 tháng 2

Bài 8:

a/ $=(\frac{2}{3}-\frac{2}{3})+\frac{5}{7}=0+\frac{5}{7}=\frac{5}{7}$

b/ $=(\frac{5}{13}+\frac{8}{13})+\frac{-5}{7}+(\frac{-20}{41}+\frac{-21}{41})$

$=1-\frac{5}{7}-1=-\frac{5}{7}$

c/ $=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}$

$=\frac{1}{2}(\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}+\frac{13-11}{11.13})$

$=\frac{1}{2}(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13})$

$=\frac{1}{2}(\frac{1}{3}-\frac{1}{13})$

$=\frac{5}{39}$

29 tháng 12 2022

C.75 min

19 tháng 7 2023

M=((x+3)2x29189x2+(x3)2x29):2x+3

27 tháng 1

chịu

 

11 tháng 3 2021

Số chính phương khi chia 3 chỉ dư 0 hoặc 1.

Trường hợp 1: 

\(a^2\equiv1\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv1\left(mod3\right)\)(loại)

Trường hợp 2: 

\(a^2\equiv1\left(mod\right)3;b^2\equiv1\left(mod3\right)\Leftrightarrow a^2+b^2\equiv2\left(mod3\right)\)(loại)

Trường hợp 3: 

\(a^2\equiv0\left(mod3\right);b^2\equiv0\left(mod3\right)\Leftrightarrow a^2+b^2\equiv0\left(mod3\right)\) ( thỏa mãn )

Vậy có đpcm.

 

 

Giải:

Giả sử a không ⋮ 3 ➩ b không ⋮ 3

\(a^2 - 1 + b^2-1\) ⋮ 3

Mà \(a^2 +b^2\)2⋮ 3 (không có thể)

Vậy a và b ⋮ 3.

 

 

11 tháng 12 2023

P = 2.3.4....a => P chia hết cho 3 

=> P - 1 : 3 dư 2 => Ko là SCP 

Ta có : 3.4.....a lẻ = 2k+1 => P = 2(2k+1) = 4k + 2 

=> P + 1 = 4k + 2 + 1 = 4k + 3 : 4 dư 3 => Ko là SCP 

=> P - 1 và P + 1 Ko là SCP

Ta có: \(S=\dfrac{4}{1\cdot3}+\dfrac{16}{3\cdot5}+\dfrac{36}{5\cdot7}+...+\dfrac{2500}{49\cdot51}\)

\(=1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{3\cdot5}+1+\dfrac{1}{5\cdot7}+...+1+\dfrac{1}{49\cdot51}\)

\(=25+\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{49\cdot51}\right)\)

\(=25+\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)

\(=25+\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)

\(=25+\dfrac{1}{2}\cdot\dfrac{50}{51}\)

\(=25+\dfrac{25}{51}\)

\(=25\cdot\dfrac{52}{51}=\dfrac{1300}{51}\)

30 tháng 1 2023

sai gòi

 

 

11 tháng 3 2021

Giả sử tồn tại n thoả mãn đề bài.

Dễ thấy \(2019^{2018}+1\) chẵn nên \(n^3+2018n\), suy ra n chẵn.

Do đó \(n^3+2018n⋮4\).

Mặt khác ta có \(2019^{2018}\equiv\left(-1\right)^{2018}\equiv1\left(mod4\right)\Rightarrow2019^{2018}+1\equiv2\left(mod4\right)\).

Điều này là vô lí vì VT chia hết cho 4 còn VP không chia hết cho 4.

Vậy không tồn tại n thoả mãn đề bài.

 

5 tháng 3 2022

-8/12= -2/3

15/-60= 1/-4

-16/-72= 2/9

35/14.15= 1/6

6 tháng 5 2022

-8/12 rút gọn bằng-2/3; 15/-60 =-1/4; -16/-72=2/9;35/14.15=1/6

16 tháng 12 2023

Phần bể chưa có nước bằng:

    1 - \(\dfrac{1}{4}\) = \(\dfrac{3}{4}\) (thể tích bể)

Bể sẽ đầy sau:

   \(\dfrac{3}{4}\) : \(\dfrac{1}{8}\) = 6 (giờ)

Đs...

3 tháng 6 2022

Ta có : p8n+3p4n- 4 = (p4n)2+3p4n- 4

Vì p là số nguyên tố lớn hơn 5 nên p có tận cùng là chữ số 1;3;7 hoặc 9

+) Với p = (...1), ta có: p4n=(...1)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...3), ta có: p4n=(...3)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...7), ta có: p4n=(...7)4n=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

+) Với p = (...9), ta có: p4n=[(...9)2n]2=(...1)2=(...1)

=> (p4n)2=(...1)2=(...1); 3p4n= 3.(...1)=(...3)

=>(p4n)2+3p4n- 4=(...1)+(...3)-4=(...0) chia hết cho 5

Vậy p8n+3p4n- 4 chia hết cho 5 khi p là số nguyên tố lớn hơn 5

20 tháng 2 2021
sao ban ia da quan
20 tháng 2 2021

            a + 3 xa + 2018 ( a N )

vậy x thuộc (a+3;a+4;a+5;a+6;...;a+2018)

tổng:

a+3+a+4+a+5+a+6+a+7+...+a+2018

=a*2016+3+4+5+6+7+...+2018

=a*2016+(2018+3)*2016:2

-----đến đây cậu làm đc ùi-mik lười lắm ------