
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


b) \(\sqrt{x^2}=\left|-8\right|\)
\(\Rightarrow\left|x\right|=8\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-8\end{matrix}\right.\)
d) \(\sqrt{9x^2}=\left|-12\right|\)
\(\Rightarrow\sqrt{\left(3x\right)^2}=12\)
\(\Rightarrow\left|3x\right|=12\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{12}{3}\\x=-\dfrac{12}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

Mình không thấy câu nào cả thì giúp kiểu gì lỗi ảnh hay sao ý

ĐKXĐ: \(x+2y\ne0\)
\(\left\{{}\begin{matrix}x-\dfrac{1}{x+2y}=\dfrac{7}{4}\\-\dfrac{5}{2}x+2+\dfrac{4}{x+2y}=-2\end{matrix}\right.\)
Đặt \(\dfrac{1}{x+2y}=z\) ta được hệ:
\(\left\{{}\begin{matrix}x-z=\dfrac{7}{4}\\-\dfrac{5}{2}x+4z=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\z=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\\dfrac{1}{x+2y}=\dfrac{1}{4}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=2\\x+2y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)

a: Xét (O) có
AD,BC là các dây không song song
AB//CD
Do đó: sđ cung AD=sđ cung BC
b: Ta có: ABCD là tứ giác nội tiếp
=>\(\hat{ADC}+\hat{ABC}=180^0\)
mà \(\hat{ABC}+\hat{BCD}=180^0\) (hai góc trong cùng phía, AB//CD)
nên \(\hat{ADC}=\hat{BCD}\)
Hình thang ABCD có \(\hat{ADC}=\hat{BCD}\)
nên ABCD là hình thang cân

a: Xét (HA/2) có
ΔAEH nội tiếp
AH là đường kính
Do đó: ΔAEH vuông tại E
=>HE⊥AB tại E
Xét (HA/2) có
ΔAFH nội tiếp
AH là đường kính
Do đó: ΔAFH vuông tại F
=>HF⊥AC tại F
Xét ΔAHB vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC=AH^2\)
Ta có: \(AE\cdot AB=AF\cdot AC\)
=>\(\frac{AE}{AC}=\frac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\frac{AE}{AC}=\frac{AF}{AB}\)
Do đó: ΔAEF~ΔACB
b: Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)
nên AEHF là hình chữ nhật
=>\(\hat{AFE}=\hat{AHE}\)
mà \(\hat{AHE}=\hat{ABC}\left(=90^0-\hat{HAB}\right)\)
nên \(\hat{AFE}=\hat{ABC}\)
ΔOAC cân tại O
=>\(\hat{OAC}=\hat{OCA}=\hat{ACB}\)
\(\hat{AFE}+\hat{OAC}=\hat{ABC}+\hat{ACB}=90^0\)
=>AO⊥ FE
c: Xét (O) có
ΔAKH nội tiếp
AH là đường kính
Do đó: ΔAKH vuông tại K
=>HK⊥AT tại K
Xét ΔAHT vuông tại H có HK là đường cao
nên \(AK\cdot AT=AH^2\)
=>\(AK\cdot AT=AE\cdot AB\)
=>\(\frac{AK}{AE}=\frac{AB}{AT}\)
Xét ΔAKB và ΔAET có
\(\frac{AK}{AE}=\frac{AB}{AT}\)
góc KAB chung
Do đó: ΔAKB~ΔAET
=>\(\hat{AKB}=\hat{AET}\)
d: ta có: A,C,B,K cùng thuộc (O)
=>ACBK nội tiếp
=>\(\hat{ACB}+\hat{AKB}=180^0\)
mà \(\hat{AKB}+\hat{AKI}=180^0\) (hai góc kề bù)
nên \(\hat{IKA}=\hat{ICB}\)
Xét ΔIKA và ΔICB có
\(\hat{IKA}=\hat{ICB}\)
góc KIA chung
Do đó: ΔIKA~ΔICB
ĐKXĐ: \(\left\{{}\begin{matrix}2x-3>=0\\x+1>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>=\dfrac{3}{2}\\x>=-1\end{matrix}\right.\)
=>\(x>=\dfrac{3}{2}\)
\(\sqrt{2x-3}-\sqrt{x+1}=x-4\)
=>\(\dfrac{2x-3-x-1}{\sqrt{2x-3}+\sqrt{x+1}}-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(\dfrac{1}{\sqrt{2x-3}+\sqrt{x+1}}-1\right)=0\)
=>x-4=0
=>x=4(nhận)