K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

A B C D E F G H

a/

Ta có

EF//AC (gt); GH//AC (gt) => EF//GH (1)

Xét tg ABC có

AE=BE (gt)

EF//AC (gt)

=> BF=CF (trong tg đường thẳng đi qua trung điểm của 1 cạnh ; // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> EF là đường trung bình của tg ABC \(\Rightarrow EF=\dfrac{AC}{2}\) (2)

Xét tg BCD chứng minh tương tự => CG=DG

Xét tg ACD chứng minh tương tự => AH=DH

=> GH là đường trung bình của tg ACD \(\Rightarrow GH=\dfrac{AC}{2}\) (3)

Từ (2) và (3) => EF=GH (4)

Từ (1) và (4) => EFGH là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)

b/

EFGH là hình chữ nhật \(\Rightarrow\widehat{EFG}=90^o\Rightarrow EF\perp FG\)

Mà FG//BD (gt)

\(\Rightarrow EF\perp BD\) mà EF//AC (gt) \(\Rightarrow AC\perp BD\)

 

 

 

24 tháng 10 2023

 

a) \(\Delta ABC\) có:

E là trung điểm của AB (gt)

EF // AC (gt)

\(\Rightarrow\) F là trung điểm của BC

\(\Rightarrow\) EF là đường trung bình của \(\Delta ABC\)

\(\Rightarrow EF=\dfrac{AC}{2}\) (1)

\(\Delta BCD\) có:

F là trung điểm của BC (cmt)

FG // BD (gt)

\(\Rightarrow\) G là trung điểm của CD

\(\Delta ACD\) có:

G là trung điểm của CD (cmt)

GH // AC (gt)

\(\Rightarrow\) H là trung điểm của AD

\(\Rightarrow\) GH là đường trung bình của \(\Delta ACD\)

\(\Rightarrow\) \(GH=\dfrac{AC}{2}\) (2)

Từ (1) và (2) \(\Rightarrow EF=GH\)

Do EF // AC (gt)

GH // AC (gt)

\(\Rightarrow\) EF // GH

Tứ giác EFGH có:

EF // GH (cmt)

EF = GH (cmt)

\(\Rightarrow EFGH\) là hình bình hành

b) Để EFGH là hình chữ nhật thì \(EF\perp FG\)

Lại có:

EF // AC (gt)

FG // BD (gt)

\(\Rightarrow AC\perp BD\)

Vậy \(AC\perp BD\) thì EFGH là hình chữ nhật

11 tháng 3 2021

1) PT \(\Leftrightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)

\(\Leftrightarrow\dfrac{x+36}{35}+\dfrac{x+36}{33}=\dfrac{x+36}{31}+\dfrac{x+36}{29}\)

\(\Leftrightarrow\left(x+36\right)\left(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}\right)=0\)

\(\Leftrightarrow x+36=0\) (Do \(\dfrac{1}{29}+\dfrac{1}{31}-\dfrac{1}{33}-\dfrac{1}{35}>0\))

\(\Leftrightarrow x=-36\).

Vậy nghiệm của pt là x = -36.

17 tháng 7

2) x(x+1)(x+2)(x+3)= 24

⇔ x.(x+3)  .   (x+2).(x+1)  = 24

⇔(\(x^2\) + 3x) . (\(x^2\) + 3x + 2) = 24

Đặt \(x^2\)+ 3x = b

⇒ b . (b+2)= 24

Hay: \(b^2\) +2b = 24

\(b^2\) + 2b + 1 = 25

\(\left(b+1\right)^2\)= 25

+ Xét b+1 = 5 ⇒ b=4 ⇒  \(x^2\)+ 3x = 4 ⇒ \(x^2\)+4x-x-4=0 ⇒x(x+4)-(x+4)=0

⇒(x-1)(x+4)=0⇒x=1 và x=-4

+ Xét b+1 = -5 ⇒ b=-6 ⇒ \(x^2\)+3x=-6 ⇒\(x^2\) + 3x + 6=0

\(x^2\) + 2.x.\(\dfrac{3}{2}\) + (\(\dfrac{3}{2}\))2 = - \(\dfrac{15}{4}\)  Hay ( \(x^2\) +\(\dfrac{3}{2}\) )2= -\(\dfrac{15}{4}\) (vô lí)

⇒x= 1 và x= 4

a) Ta có: \(\dfrac{AE}{AB}=\dfrac{2}{5}\)

\(\dfrac{AF}{AC}=\dfrac{4}{10}=\dfrac{2}{5}\)

Do đó: \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)\(\left(=\dfrac{2}{5}\right)\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)

Suy ra: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{2}{5}=\dfrac{EF}{12}\)

hay EF=4,8(cm)

Vậy: EF=4,8cm

10 tháng 12 2020

x3 _ x2 _ 4x - 4 = 0

x mũ 2(x+1)- 4(x+1)=0

(x mũ 2 - 4) (x+1)=0

(x+2) (x-2) (x+1)  =0

suy ra (x+2)=0

            (x-2)=0

            (x+1)=0

vậy      x=-2

            x=2

            x= -1

good luck!

10 tháng 12 2020

Sửa đề : \(x^3-x^2-4x+4=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1\right)=0\Leftrightarrow x=\pm2;1\)

21 tháng 3 2021

$P=4a^2+4a(b-3)+b^2-6b+9+3b^2-6b+3$

$=4a^2+2.2a.(b-3)+(b-3)^2+3.(b-1)^2$

$=(2a+b-3)^2+3.(b-1)^2$

Mà $(2a+b-3)^2 \geq 0;3.(b-1)^2 \geq 0$ với mọi $a;b$

Nên $P=(2a+b-3)^2+3.(b-1)^2 \geq 0$

Dấu $=$ xảy ra $⇔(2a+b-3)^2=0;3.(b-1)^2=0⇔2a+b-3=0;b=1⇔a=1;b=1$

Vậy $MinP=0$ tại $a=b=1$

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)

2 tháng 4 2021

a) (Bạn tự vẽ hình ạ)

Ta có AD.AB = AE.AC

⇒ \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét \(\Delta ABC\) và \(\Delta AED\) có:

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

\(\widehat{A}:chung\)

⇒ \(\Delta ABC\sim\Delta AED\)   \(\left(c.g.c\right)\)

⇒ DE // BC

2 tháng 4 2021

b) 

A B C M N

a) Xét ΔAHB vuông tại H và ΔDAB vuông tại A có

\(\widehat{ABH}\) chung

Do đó: ΔAHB∼ΔDAB(g-g)

mik chỉ cần mng lm phần C thui ạ

 

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

Vận tốc trung bình đi từ A đến B là:

$\frac{20+30}{2}=25$ (km/h)

 

18 tháng 12 2023

                 Kiến thức cần nhớ:

Vận tốc trung bình bằng tổng quãng đường chia cho tổng thời gian đi hết quãng đường đó!

Công thức Vtb =  \(\dfrac{S_1+S_2+...+S_n}{t_1+t_2+...+t_n}\)

           Giải chi tiết:

   Gọi quãng đường AB là: S  (km); S > 0 

Thời gian người đó đi hết nửa quãng đường đầu là:

       \(\dfrac{S}{2}\) : 20 = \(\dfrac{S}{40}\) (giờ) 

Thời gian người đó đi hết nửa quãng đường sau là:

        \(\dfrac{S}{2}\) : 30 = \(\dfrac{S}{60}\) (giờ)

Vận tốc trung bình của người đó đi từ A đến B là:

 Áp dụng công thức Vtb  = \(\dfrac{S_1+S_2}{t_1+t_2}\) ta có

Vtb = \(\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{60}}\)

 Vtb   =   \(\dfrac{S}{S.\left(\dfrac{1}{40}+\dfrac{1}{60}\right)}\) 

Vtb = \(\dfrac{1}{\dfrac{1}{24}}\)

Vtb = 24 (km/h)