K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

Bài 1:

a)

\(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\) ĐKXĐ: x >1

\(=\left(\dfrac{2\sqrt{x}.\sqrt{x}}{2.2\sqrt{x}}-\dfrac{2}{2.2\sqrt{x}}\right)\left(\dfrac{\left(x-\sqrt{x}\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)^2}-\dfrac{\left(x+\sqrt{x}\right)\left(\sqrt{x}+1\right)}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{2x-2}{4\sqrt{x}}\right)\left(\dfrac{x\sqrt{x}-x-x+\sqrt{x}-x\sqrt{x}-x-x-\sqrt{x}}{\left(x-1\right)^2}\right)\\ =\left(\dfrac{x-1}{2\sqrt{x}}\right)\left(\dfrac{-4x}{\left(x-1\right)^2}\right)\\ =\dfrac{\left(x-1\right).\left(-4x\right)}{2\sqrt{x}.\left(x-1\right)^2}=\dfrac{-2\sqrt{x}}{x-1}\)

b)

Với x >1, ta có:

A > -6 \(\Leftrightarrow\dfrac{-2\sqrt{x}}{x-1}>-6\Rightarrow-2\sqrt{x}>-6\left(x-1\right)\)

\(\Leftrightarrow-2\sqrt{x}+6x-6>0\\ \Leftrightarrow x-\dfrac{2}{6}\sqrt{x}-1>0\\ \Leftrightarrow x-2.\dfrac{1}{6}\sqrt{x}+\left(\dfrac{1}{6}\right)^2>1+\dfrac{1}{36}\\ \Leftrightarrow\left(\sqrt{x}-\dfrac{1}{6}\right)^2>\dfrac{37}{36}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{6}-\sqrt{x}>\dfrac{\sqrt{37}}{6}\\\sqrt{x}-\dfrac{1}{6}>\dfrac{\sqrt{37}}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-\sqrt{x}>\dfrac{\sqrt{37}-1}{6}\\\sqrt{x}>\dfrac{\sqrt{37}+1}{6}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-x>\dfrac{19-\sqrt{37}}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{\sqrt{37}-19}{18}\\x>\dfrac{19+\sqrt{37}}{18}\end{matrix}\right.\)

Vậy không có x để A >-6

20 tháng 7 2017

làm 1 bài đủ nản @_ @

Đề 1:

Câu 1: A

Câu 2: A

Đề 2: 

Câu 1: B

Câu 2: C

26 tháng 9 2017

Bài 2 :

a ) \(\sqrt{4x-8}+\sqrt{x-2}=4+\dfrac{1}{3}\sqrt{9x-18}\) ( ĐKXĐ : \(x\ge2\) )

\(\Leftrightarrow2\sqrt{x-2}+\sqrt{x-2}=4+\dfrac{1}{3}.3\sqrt{x-2}\)

\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=4\)

\(\Leftrightarrow2\sqrt{x-2}=4\)

\(\Leftrightarrow\sqrt{x-2}=2\)

\(\Leftrightarrow x-2=4\)

\(\Leftrightarrow x=2\) ( thỏa mãn ĐKXĐ )
Vậy phương trình có nghiệm x = 2 .

26 tháng 9 2017

Bài 2 :

b ) \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}-\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}=0\)

\(\Leftrightarrow|x-3|-\sqrt{3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3-\sqrt{3}=0\left(x\ge3\right)\\3-x-\sqrt{3}=0\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3+\sqrt{3}\\x=3-\sqrt{3}\end{matrix}\right.\)

Vậy phương trình cón nghiệm \(x=3+\sqrt{3}\) hoặc \(x=3-\sqrt{3}\) .

22 tháng 11 2017

Đề 1: TỰ LUẬN

Câu 1: sin 60o31' = cos 29o29'

cos 75o12' = sin 14o48'

cot 80o = tan 10o

tan 57o30' = cot 32o30'

sin 69o21' = cos 20o39'

cot 72o25' = 17o35'

22 tháng 11 2017

- Chiều về mình làm cho nha nha vui Giờ mình đi học rồi thanghoa Bạn có gấp lắm hông leu

30 tháng 6 2017

đề có vấn đề chỗ 1/ căn(1998-1) 

30 tháng 6 2017

Sửa đề: Cái phân số cuối cùng phải là  \(\frac{1}{\sqrt{1998.1}}\)  nha bạn :)

Giải: Ta thấy các số hạng của S đều có dạng  \(\frac{1}{\sqrt{k\left(1999-k\right)}}\)  với  \(k\in N;1\le k\le1998\)

Áp dụng BĐT Cô-si dạng  \(\sqrt{ab}\le\frac{a+b}{2}\)   (Đẳng thức xảy ra khi và chỉ khi a = b) ta có

\(\frac{1}{\sqrt{k\left(1999-k\right)}}\ge\frac{1}{\frac{k+1999-k}{2}}=\frac{2}{1999}\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(k=1999-k\)  \(\Leftrightarrow\)  \(k=\frac{1999}{2}\)  (vô lý vì  \(k\in N\)).

Do đó đẳng thức không xảy ra, hay  \(\frac{1}{\sqrt{k\left(1999-k\right)}}>\frac{2}{1999}\)

Mà S có 1998 số dạng \(\Rightarrow\)  \(S>2.\frac{1998}{1999}\)