Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\lim\left(\sqrt{9^n-2.3^n}-3^n+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{\left(\sqrt{9^n-2.3^n}-3^n\right)\left(\sqrt{9^n-2.3^n}+3^n\right)}{\sqrt{9^n-2.3^n}+3^n}+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{-2.3^n}{\sqrt{9^n-2.3^n}+3^n}+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{-2.3^n}{3^n\left(\sqrt{1-\dfrac{2}{3^n}}+1\right)}+\dfrac{1}{2021}\right)\)
\(=\lim\left(\dfrac{-2}{\sqrt{1-\dfrac{2}{3^n}}+1}+\dfrac{1}{2021}\right)\)
\(=\dfrac{-2}{1+1}+\dfrac{1}{2021}=-\dfrac{2020}{2021}\)
2.
\(AP=4PB=4\left(AB-AP\right)=4AB-4AP\)
\(\Rightarrow5AP=4AB\Rightarrow AP=\dfrac{4}{5}AB\)
\(\Rightarrow\overrightarrow{AP}=\dfrac{4}{5}\overrightarrow{AB}\)
\(CD=5CQ=5\left(CD-DQ\right)\Rightarrow5DQ=4CD\Rightarrow DQ=\dfrac{4}{5}CD\)
\(\Rightarrow\overrightarrow{DQ}=-\dfrac{4}{5}\overrightarrow{CD}\)
Ta có:
\(\overrightarrow{PQ}=\overrightarrow{PA}+\overrightarrow{AD}+\overrightarrow{DQ}=-\dfrac{4}{5}\overrightarrow{AB}+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}\)
\(=-\dfrac{4}{5}\left(\overrightarrow{AD}+\overrightarrow{DB}\right)+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}=-\dfrac{4}{5}\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{DB}+\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CD}\)
\(=\dfrac{1}{5}\overrightarrow{AD}-\dfrac{4}{5}\left(\overrightarrow{CD}+\overrightarrow{DB}\right)=\dfrac{1}{5}\overrightarrow{AD}-\dfrac{4}{5}\overrightarrow{CB}\)
\(=\dfrac{1}{5}\overrightarrow{AD}+\dfrac{4}{5}\overrightarrow{BC}\)
Mà \(\overrightarrow{AD};\overrightarrow{BC}\) không cùng phương\(\Rightarrow\overrightarrow{AD};\overrightarrow{BC};\overrightarrow{PQ}\) đồng phẳng
1.
\(u_{n+1}=4u_n+3.4^n\)
\(\Leftrightarrow u_{n+1}-\dfrac{3}{4}\left(n+1\right).4^{n+1}=4\left[u_n-\dfrac{3}{4}n.4^n\right]\)
Đặt \(u_n-\dfrac{3}{4}n.4^n=v_n\Rightarrow\left\{{}\begin{matrix}v_1=2-\dfrac{3}{4}.4=-1\\v_{n+1}=4v_n\end{matrix}\right.\)
\(\Rightarrow v_n=-1.4^{n-1}\)
\(\Rightarrow u_n=\dfrac{3}{4}n.4^n-4^{n-1}=\left(3n-1\right)4^{n-1}\)
2.
\(a_n=\dfrac{a_{n-1}}{2n.a_{n-1}+1}\Rightarrow\dfrac{1}{a_n}=2n+\dfrac{1}{a_{n-1}}\)
\(\Leftrightarrow\dfrac{1}{a_n}-n^2-n=\dfrac{1}{a_{n-1}}-\left(n-1\right)^2-\left(n-1\right)\)
Đặt \(\dfrac{1}{a_n}-n^2-n=b_n\Rightarrow\left\{{}\begin{matrix}b_1=2-1-1=0\\b_n=b_{n-1}=...=b_1=0\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{a_n}=n^2+n\Rightarrow a_n=\dfrac{1}{n^2+n}\)
ĐKXĐ: \(-2\le x\le3\)
Đặt \(\sqrt{x+2}+2\sqrt{3-x}=a\Rightarrow4\sqrt{6+x-x^2}-3x=a^2-14\)
Mặt khác \(a^2=\left(\sqrt{x+2}+2\sqrt{3-x}\right)^2\le5\left(x+2+3-x\right)=25\)
\(\Rightarrow a\le5\)
Và \(\sqrt{x+2}+\sqrt{3-x}+\sqrt{3-x}\ge\sqrt{5}+\sqrt{3-x}\ge\sqrt{5}\) \(\Rightarrow a\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le a\le5\)
Phương trình trở thành:
\(a^2-14=ma\Leftrightarrow\frac{a^2-14}{a}=m\) với \(a\in\left[\sqrt{5};5\right]\)
\(f\left(a\right)=\frac{a^2-14}{a}\Rightarrow f'\left(a\right)=\frac{2a^2-a^2+14}{a^2}=\frac{a^2+14}{a^2}>0\)
\(\Rightarrow f\left(a\right)\) đồng biến \(\Rightarrow f\left(\sqrt{5}\right)\le f\left(a\right)\le5\)
\(\Rightarrow-\frac{9\sqrt{5}}{5}\le f\left(a\right)\le\frac{11}{5}\Rightarrow-\frac{9\sqrt{5}}{5}\le m\le\frac{11}{5}\)
a.
\(sin\left(2x-\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow2x-\dfrac{\pi}{4}=-\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=-\dfrac{\pi}{8}+k\pi\) (1)
\(-\dfrac{\pi}{3}\le x\le\dfrac{7\pi}{3}\Rightarrow-\dfrac{\pi}{3}\le-\dfrac{\pi}{8}+k\pi\le\dfrac{7\pi}{3}\)
\(\Rightarrow-\dfrac{5}{24}\le k\le\dfrac{59}{24}\Rightarrow k=\left\{0;1;2\right\}\)
Thế vào (1) \(\Rightarrow x=\left\{-\dfrac{\pi}{8};\dfrac{7\pi}{8};\dfrac{15\pi}{8}\right\}\)
A B C D S H I K
a/
\(SH\perp\left(ABCD\right);CD\in\left(ABCD\right)\Rightarrow CD\perp SH\)
ABCD là HCN \(\Rightarrow CD\perp AD\)
\(\Rightarrow CD\perp\left(SAD\right)\)
\(\Rightarrow\widehat{CSD}\) là góc giữa SC với (SAD)
Ta có
\(SH\perp\left(ABCD\right);AD\in\left(ABCD\right)\Rightarrow SH\perp AD\)
Xét tg vuông SHD có
\(SD=\sqrt{SH^2+HD^2}\) Mà HD=AD-AH=3a-a=2a
\(\Rightarrow SD=\sqrt{8a^2+4a^2}=2a\sqrt{3}\)
Ta có
\(CD\perp\left(SAD\right);SD\in\left(SAD\right)\Rightarrow CD\perp SD\)
Xét tg vuông SCD có
\(\tan\widehat{CSD}=\dfrac{CD}{SD}=\dfrac{2a}{2a\sqrt{3}}=\dfrac{\sqrt{3}}{3}\Rightarrow\widehat{CSD}=30^o\)
b/
Ta có
\(SH\perp\left(ABCD\right);SH\in\left(SHB\right)\Rightarrow\left(SHB\right)\perp\left(ABCD\right)\)
\(SH\perp\left(ABCD\right);SH\in\left(SHI\right)\Rightarrow\left(SHI\right)\perp\left(ABCD\right)\)
Xét tg vuông ABH có
\(BH^2=AB^2+AH^2=4a^2+a^2=5a^2\)
Xét tg vuông DHI có
\(HI^2=HD^2+DI^2=4a^2+a^2=5a^2\)
Xét tg vuông BCI có
\(BI^2=BC^2+CI^2=9a^2+a^2=10a^2\)
Xét tg BHI có
\(BI^2=BH^2+HI^2=5a^2+5a^2=10a^2\)
=> tg BHI là tg vuông cân tại H
Ta có
\(SH\perp\left(ABCD\right);HI\in\left(ABCD\right)\Rightarrow HI\perp SH\)
\(HI\perp HB\left(cmt\right)\)
\(\Rightarrow HI\perp\left(SHB\right);HI\in\left(SHI\right)\Rightarrow\left(SHI\right)\perp\left(SHB\right)\)
c/
Ta có
\(SH\perp\left(ABCD\right);BH\in\left(ABCD\right)\Rightarrow SH\perp HB\)
\(SH\perp\left(ABCD\right);HI\in\left(ABCD\right)\Rightarrow SH\perp HI\)
Xét tg vuông SHB có
\(SB=\sqrt{SH^2+BH^2}=\sqrt{8a^2+5a^2}=a\sqrt{13}\)
Xét tg vuông SHI có
\(SI=\sqrt{SH^2+HI^2}=\sqrt{8a^2+5a^2}=a\sqrt{13}\)
=> SB=SI => tg SBI cân tại S
Gọi K là trung điểm BI => \(SK\perp BI\) (trong tg cân đường trung tuyến xuất phát từ đỉnh tg cân đồng thời là đường cao)
c/m tương tự với tgBHI ta có \(HK\perp BI\)
\(\Rightarrow\widehat{SKH}\) là góc giữa (SBI) và (ABCD)
Xét tg vuông BHI có
\(HK=\dfrac{BI}{2}=\dfrac{a\sqrt{10}}{2}\) (trung tuyến thuộc cạnh huyền)
\(SH\perp\left(ABCD\right);HK\in\left(ABCD\right)\Rightarrow SH\perp HK\)
Xét tg vuông SKH có
\(\tan\widehat{SKH}=\dfrac{SH}{HK}=\dfrac{2a\sqrt{2}}{\dfrac{a\sqrt{10}}{2}}=\dfrac{4\sqrt{5}}{5}\)
còn câu d tôi bận làm sau nhé
Cosx= cos pi/8 là giải phương trình như nào vậy mọi người