Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
Trả lời:
Bài 1:
a, \(-6x^2-9xy+12x=-3x\left(2x+3y-4\right)\)
b, \(2x\left(x-3\right)+y\left(x-3\right)+3-x\)
\(=2x\left(x-3\right)+y\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(2x+y+1\right)\)
c, \(10xy\left(x-2y\right)-6y\left(2y-x\right)\)
\(=10xy\left(x-2y\right)+6y\left(x-2y\right)\)
\(=2y\left(x-2y\right)\left(5x+3\right)\)
d, \(3x\left(a-b\right)+6\left(a-b\right)=3\left(a-b\right)\left(x+2\right)\)
e, \(12x^2+15xyz-20x^2y^2=x\left(12x+15yz+20xy^2\right)\)
Bài 2:
a, \(2x^3+4x^2=0\)
\(\Leftrightarrow2x^2\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x^2=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}}\)
Vậy x = 0; x = - 2 là nghiệm của pt.
b, \(\left(x+1\right)^2=3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)^2-3x\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-3x\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\1-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}}\)
Vậy x = - 1; x = 1/2 là nghiệm của pt.
c, \(\left(3x-5\right)^2=8\left(5-3x\right)^2\)
\(\Leftrightarrow\left(3x-5\right)^2-8\left(5-3x\right)^2=0\)
\(\Leftrightarrow\left(3x-5\right)^2-8\left(3x-5\right)^2=0\)
\(\Leftrightarrow\left(3x-5\right)^2\left(1-8\right)=0\)
\(\Leftrightarrow7\left(3x-5\right)^2=0\)
\(\Leftrightarrow\left(3x-5\right)^2=0\)
\(\Leftrightarrow3x-5=0\)
\(\Leftrightarrow x=\frac{5}{3}\)
Vậy x = 5/3 là nghiệ của pt.
d, \(\left(x-3\right)^2=2x-6\)
\(\Leftrightarrow\left(x-3\right)^2-\left(2x-6\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}}\)
Vậy x = 3; x = 5 là nghiệm của pt.
bài 1
\(a.-6x^2-9xy+12x=-3x\left(2x+3y-4\right)\)
\(b.2x\left(x-3\right)+y\left(x-3\right)-\left(x-3\right)=\left(x-3\right)\left(2x+y-1\right)\)
\(c.10xy\left(x-2y\right)+6y\left(x-2y\right)=2y\left(x-2y\right)\left(5x+3\right)\)
\(d.3x\left(a-b\right)+6\left(a-b\right)=3\left(a-b\right)\left(x+2\right)\)
\(e.12x^2+15xyz-20x^2y^2=x\left(12x+15yz-20xy^2\right)\)
Bài 2.
a.\(2x^3+4x^2=2x^2\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b. \(\left(x+1\right)^2=3x\left(x+1\right)\Leftrightarrow\left(x+1\right)\left(x+1-3x\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{2}\end{cases}}\)
c.\(\left(3x-5\right)^3=8\left(5-3x\right)^2\Leftrightarrow\left(3x-5\right)^2\left(3x-5-8\right)=0\Leftrightarrow\orbr{\begin{cases}3x-5=0\\3x-5-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{13}{3}\end{cases}}\)
d. \(\left(x-3\right)^2=2\left(x-3\right)\Leftrightarrow\left(x-3\right)\left(x-3-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)