
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.




Do chu vi ống trụ là 4 cm nên khi "trải phẳng" ống trụ, ta sẽ được một hình chữ nhật có kích thước 4x12 (cm).
Sợi dây duỗi thẳng sẽ trở thành 4 đường chéo của 4 hình chữ nhật có kích thước 3x4 (cm).
Áp dụng định lý Pi-ta-go, ta có chiều dài mỗi đường chéo (hay mỗi đoạn dây) sẽ là √3² + 4² = 5 (cm)
Do mỗi đường chéo có kích thước bằng nhau nên tổng chiều dài sợi dây là 5x 4= 20 (cm).

a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

2.
Gọi độ dài 3 cạnh tam giác là a;b;c với a;b;c là các số nguyên dương
Do chu vi tam giác là 22 nên ta có: a+b+c=22
Do các cạnh tỉ lệ với 2;4;5 nên: \(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)
Áp dụng t.c dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)
a=2.2=4
b=4.2=8
c=5.2=10
3.
Gọi số cây lớp 7A trồng là a và số cây lớp 7B trồng là b (a;b là các số nguyên dương)
Do tỉ số cây trồng của lớp 7A và 7B là 0,8 nên:
\(\frac{a}{b}=0,8=\frac45\Rightarrow\frac{a}{4}=\frac{b}{5}\)
Do lớp 7B trồng nhiều hơn 20 cây nên: b-a =20
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{4}=\frac{b}{5}=\frac{b-a}{5-4}=\frac{20}{1}=20\)
a=20.4=80
b=20.5=100
Vậy...
4.
Gọi số học sinh giỏi 3 khối 6;7;8 lần lượt là a;b;c (a;b;c là các số nguyên dương)
Do số học sinh giỏi 3 khối tỉ lệ với 2;3;5 nên:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Do tổng số hs giỏi 2 khối 6 và 8 nhiều hơn số hs giỏi khối 7 là 28 hs nên:
a+c-b=28
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+c-b}{2+5-3}=\frac{28}{4}=7\)
a=7.2=14
b=7.3=21
c=7.5=35
5.
Gọi số kg giấy vụn 3 lớp thu được lần lượt là a;b;c (kg) với a;b;c nguyên dương
Do số kd giấy vụn tỉ lệ với 3;7;5 nên:
\(\frac{a}{3}=\frac{b}{7}=\frac{c}{5}\)
Do 3 lần số giấy vụn lớp 7A nhiều hơn lớp 7B là 30kg nên:
3a-b=30
Áp dụng t.c dãy tỉ số bằng nhau:
\(\frac{a}{3}=\frac{b}{7}=\frac{c}{5}=\frac{3a-b}{3.3-7}=\frac{30}{2}=15\)
a=15.3=45
b=15.7=105
c=15.5=75

a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DE
b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//CD