1. Chứng minh bình phương của một số tự nhiên lớn hơn 3 khi chia cho 12 đều có số dư là 1.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Gọi số nguyên tố lớn 3 là:p
Số nguyên tố lớn hơn 3 có dạng là:3k+1,3k+2
Nếu p=3k+1 thì p2=(3k+1)2=3k2+2.3k.1+12=9k2+6k+1=3.(3k2+2k)+1 chia 3 dư 1
Nếu p=3k+2 thì p2=(3k+2)2=3k2+2.3k.2+22=9k2+12k+4=9k2+12k+3+1=3.(3k2+4k+1)+1 chia 3 dư 1
Vậy Bình phương của số nguyên tố lớn hơn 3 chia cho 3 có số dư là 1(đpcm)

Gọi số đó là a2 ( a là số nguyên tố khác 2 và 3 )
Do a là số nguyên tố khác 2 nên a lẻ . Suy ra a2 lẻ . Suy ra a2 chia hết cho 4 dư 1
Suy ra a2 – 1 chia hết cho 4.1
Do a là số nguyên tố khác 3 nên a không chia hết cho 3 . Suy ra a2 không chia hết cho 3
Suy ra a2 chia 3 dư 1 . Suy ra a2 – 1 chia hết cho 3.2
Từ (1) và (2) Suy ra a2 – 1 chia hết cho 3 và 4 mà (3,4) = 1 nên a2 – 1 chia hết cho 12
Vậy a2 chia hết cho 12 .

vì tất cả các số nguyên tố khác 2 đều là số lẻ mà số lẻ nhân số lẻ bằng số lẻ nên chúng chia cho 2 dư 1

Gọi số cần tìm là : \(a^2\left(a\ne2;3\right)\)
Do a là số nguyên tố khác 2
\(\Rightarrow a\) lẻ \(\Leftrightarrow a^2\) lẻ
\(\Rightarrow a^2:4\) dư 1
\(\Rightarrow\left(a^2-1\right)⋮4^{\left(1\right)}\)
Do a là số nguyên tố khác 3 nên a không chia hết cho 3 => \(a^2\) không chia hết cho 3
\(\Rightarrow a^2:3\) dư 1
\(\Rightarrow a^2-1⋮3^{\left(2\right)}\)
Từ (1) và \(\left(2\right)\Rightarrow\left(a^2-1\right)⋮3;4\) . Mà ta có 3 và 4 là hai số nguyên tố cùng nhau
\(\Rightarrow\left(a^2-1\right)⋮3.4\\ \Rightarrow\left(a^2-1\right)⋮12\)
\(\Rightarrow a^2:12\) dư 1