( x - 2022) . 958 = 0
7x + 4x = 9900
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(11-x):(-5)=15`
`=> 11-x=-75`
`=> x=86`
Vậy `x = 86`
`((2x+3)^2022) . (-7x+84)=0`
`=> (2x+3)^2022 = 0` hoặc `-7x + 84 = 0`
`=> 2x+3=0` hoặc `-7x = -84`
`=> x = -3/2` hoặc `x = 12`
Vậy `x = -3/2` hoặc `x = 12`
`(x-3)(x+1) < 0`
Ta có: `x - 3 < x + 1`
nên: `x - 3 < 0` và `x + 1 > 0`
`=> x < 3 và x > -1`
`=> -1 < x < 3`
Vậy `-1 <x < 3`
#\(N\)
`a, (11-x)`\(\div\)`(-5)=15`
`11-x=15.-5`
`11-x=-75`
`x=11-(-75)`
`x=11+75=86`
`b, (2x-3)^2022.(-7x+84)=0`
`=>`\(\left\{{}\begin{matrix}\left(2x-3\right)^{2022}=0\\\left(-7x+84\right)=0\end{matrix}\right.\)
`=>` \(\left\{{}\begin{matrix}2x-3=0\\-7x+84=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3+0\\-7x=0-84\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=3\\-7x=-84\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\div2\\x=-84\div-7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=12\end{matrix}\right.\)
`c, (x-3) (x+1) <0`
`-> (x-3) < x+1`
`-> (x-3)<0 , (x+1)>0`
`-> x < 3 , x> (-1)`
`-> 3 > x > -1`
vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)
mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
a) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: S={-5;2}
b) Ta có: \(3x^2-7x+1=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{1}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{1}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}-\dfrac{37}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=\dfrac{37}{36}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{7}{6}=\dfrac{\sqrt{37}}{6}\\x-\dfrac{7}{6}=-\dfrac{\sqrt{37}}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{37}+7}{6}\\x=\dfrac{-\sqrt{37}+7}{6}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{\sqrt{37}+7}{6};\dfrac{-\sqrt{37}+7}{6}\right\}\)
c) Ta có: \(3x^2-7x+8=0\)
\(\Leftrightarrow3\left(x^2-\dfrac{7}{3}x+\dfrac{8}{3}\right)=0\)
mà 3>0
nên \(x^2-\dfrac{7}{3}x+\dfrac{8}{3}=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{7}{6}+\dfrac{49}{36}+\dfrac{47}{36}=0\)
\(\Leftrightarrow\left(x-\dfrac{7}{6}\right)^2=-\dfrac{47}{36}\)(vô lý)
Vậy: \(x\in\varnothing\)
a) x2 - 4x - 5 = 0
=> x2 - 5x + x - 5 = 0
=> x(x - 5) + (x - 5) = 0
=> (x + 1)(x - 5) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)
b) 4x2 + 7x - 11 = 0
=> 4x2 + 11x - 4x - 11 = 0
=> x(4x + 11) - (4x + 11) = 0
=> (x - 1)(4x + 11) = 0
=> \(\orbr{\begin{cases}x-1=0\\4x+11=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)
c) -7x2 + 6x + 1 = 0
=> -7x2 + 7x - x + 1 = 0
=> -7x(x - 1) - (x - 1) = 0
=> (-7x - 1)(x - 1) = 0
=> \(\orbr{\begin{cases}-7x-1=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-7x=1\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=1\end{cases}}\)
d) -10x2 + 7x + 3 = 0
=> -10x2 + 10x - 3x + 3 = 0
=> -10x(x - 1) - 3(x - 1) = 0
=> (-10x - 3)(x - 1) = 0
=> \(\orbr{\begin{cases}-10x-3=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}-10x=3\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{3}{10}\\x=1\end{cases}}\)
b: \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)
a: =>-2x=-8
hay x=4
b: =>7x=-21
hay x=-3
c: =>0,25x=-1,5
hay x=-6
d: =>5,3x=6,36
hay x=6/5
e: =>-4x=-12
hay x=3
f: =>-10x=-10
hay x=1
g: =>2x+2-3-2x=0
=>-1=0(vô lý)
h: =>3-3x+4x-3=0
=>x=0
a,
\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)
b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)
c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)
`(x-2022).958=0`
`x-2022=0:958`
`x-2022=0`
`x=0+2022`
`x=2022`
_______________________
`7x+4x=9900`
`(7+4)x=9900`
`11x=9900`
`x=9900:11`
`x=900`
( x - 2022 ) . 958 = 0
x - 2022 = 0
x = 2022
7x + 4x = 9900
11x = 9900
x = 900