K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2023

           a,  Xét tứ giác ABCD có : BM = MC; DM = MA 

⇒ Tứ giác ABCD  là hình bình hành vì tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác đó là hình bình hành. 

Vì ABCD là hình bình hành có một góc vuông nên ABCD là HCN (đpcm)

       ⇒ AB // CD; AB = CD

b, Xét tứ giác BEDC có:

            BE // CD

            BE = AB = CD

  ⇒ BEDC là hình bình hành (vì một tứ giác có một cặp cạnh đối diện song song và bằng nhau thì tứ giác đó là hình bình hành)

c, Xét tam giác ADE có: 

    AM = MD;

    AB = BE;

⇒ BM là đường trung bình của tam giác ADE 

 ⇒ BM = \(\dfrac{1}{2}\) DE

   ⇒ \(\dfrac{BM}{DE}\) = \(\dfrac{1}{2}\) (1) 

     BM // DE

Theo hệ quả của talet ta có:

      \(\dfrac{MK}{KE}\) = \(\dfrac{BM}{DE}\) (2)

Kết hợp (1) và (2) ta có:

     \(\dfrac{MK}{KE}\) = \(\dfrac{1}{2}\)

     KE = 2.MK (đpcm)

   

 

 

     

  

 

 

 

6 tháng 12 2023

3 tháng 12 2023

\(3x\left(x+1\right)-2x\left(x+1\right)=-x-1\)

\(\Leftrightarrow\left(x+1\right)\left(3x-2x\right)=-\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)x+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

3 tháng 12 2023

\(\left(2x+3\right)^2-4x^2=10\\ \Leftrightarrow\left(4x^2+12x+9\right)-4x^2=10\\ \Leftrightarrow4x^2-4x^2+12x=10-9\\ \Leftrightarrow12x=1\\ \Leftrightarrow x=\dfrac{1}{12}\)

DT
3 tháng 12 2023

\(\left(x+1\right)^2-3\left(x+1\right)=\left(x+1\right)\left(x+1-3\right)=\left(x+1\right)\left(x-2\right)\)

\(2x\left(x-2\right)-\left(x-2\right)^2=\left(x-2\right)\left[2x-\left(x-2\right)\right]=\left(x-2\right)\left(2x-x+2\right)=\left(x-2\right)\left(x+2\right)\)

\(4x^2-20xy+25y^2=\left(2x\right)^2-2.2x.5y+\left(5y\right)^2=\left(2x-5y\right)^2\)

\(x^2+3x-x-3=x\left(x+3\right)-\left(x+3\right)=\left(x-1\right)\left(x+3\right)\)

\(x^2-xy+x-y=x\left(x-y\right)+\left(x-y\right)=\left(x-y\right)\left(x+1\right)\)

\(2y\left(x+2\right)-3x-6=2y\left(x+2\right)-3\left(x+2\right)=\left(x+2\right)\left(2y-3\right)\)

3 tháng 12 2023

`a, 8xy^2-2x^2y`

`= 2xy ( 4y - x)`

`b, x(x-y) -y(y-x)`

`= x(x-y) + y(x-y)`

`= (x-y)(x+y)`

`c, x(x-1) + (1-x)^2`

`= x(x-1)+(x-1)^2`

`= (x-1) (x+x-1)`

`=(x-1)(2x-1)`

2 tháng 12 2023

Ta có \(x^2+y^2+xy+x=y-1\)

\(\Leftrightarrow2x^2+2y^2+2xy+2x-2y+2=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

\(\Rightarrow B=\left(-1+1-1\right)^{2023}\) \(=\left(-1\right)^{2023}\) \(=-1\)

2 tháng 12 2023

bvbbbvvbvv

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Lời giải:
a. 

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) 

$AM=\frac{BC}{2}=10:2=5$ (cm) - tính chất đường trung tuyến ứng với cạnh huyền thì bằng 1/2 cạnh huyền.

b.

Tứ giác $ADHE$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{E}$ nên $ADHE$ là hcn

$\Rightarrow AH=DE$.

c.

Do $AM=\frac{BC}{2}=BM$ nên tam giác $MAB$ cân tại $M$

$\Rightarrow \widehat{B}=\widehat{MAB}$

Gọi $T$ là giao điểm $HF$ và $AM$

Do $F$ đối xứng với $A$ qua $E$ nên $E$ là trung điểm của $AF$.

Tam giác $HAF$ có đường cao $HE$ đồng thời là trung tuyến nên $HAF$ cân tại $H$

$\Rightarrow HE$ cũng là đường phân giác.

$\Rightarrow \widehat{H_1}=\widehat{H_2}$

$\Rightarrow \widehat{AHT}=\widehat{H_1}+\widehat{H_2}=2\widehat{H_1}=2\widehat{A_2}=\widehat{A_2}+\widehat{A_2}$

$=\widehat{A_2}+90^0-\widehat{B}=\widehat{A_2}+90^0-\widehat{MAB}=\widehat{A_2}+90^0-(\widehat{A_1}+\widehat{A_2})$

$=90^0-\widehat{A_1}$

Vậy: $\widehat{AHT}+\widehat{A_1}=90^0$

$\Rightarrow \widehat{HTA}=180^0-(\widehat{AHT}+\widehat{A_1})=180^0-90^0=90^0$
$\Rightarrow AM\perp HF$

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Hình vẽ: