K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

k pải chứ...mk cần gấp a~

13 tháng 4 2020

Đa thức \(P\left(x\right)=x^4-5x^2-2x+3\)có bốn nghiệm là \(x_1;x_2;x_3;x_4\)nên P(x) có dạng \(\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)(do P(x) là đa thức bậc bốn)

Ta có: \(Q\left(x\right)=x^2-3=\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)\)

\(\Rightarrow T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)\)

\(=\left[\left(x_1-\sqrt{3}\right)\left(x_2-\sqrt{3}\right)\left(x_3-\sqrt{3}\right)\left(x_4-\sqrt{3}\right)\right]\)

                   \(\left[\left(x_1+\sqrt{3}\right)\left(x_2+\sqrt{3}\right)\left(x_3+\sqrt{3}\right)\left(x_4+\sqrt{3}\right)\right]\)

\(=P\left(\sqrt{3}\right).P\left(-\sqrt{3}\right)=\left(-3-2\sqrt{3}\right)\left(-3+2\sqrt{3}\right)\)

\(=\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)=9-12=-3\)

Vậy \(T=Q\left(x_1\right).Q\left(x_2\right).Q\left(x_3\right).Q\left(x_4\right)=-3\)

17 tháng 10 2017

Ta có:

\(4\left(1-a\right)\left(1-c\right)\left(1-b\right)\le4\left(1-b\right).\frac{\left(1-a+1-c\right)^2}{4}\)

\(=\left(1-b\right)\left(2-a-c\right)^2=\left(1-b\right)\left(a+2b+c\right)^2\)

\(=\left(1-b\right)\left(a+2b+c\right)\left(a+2b+c\right)\)

\(\le\left(a+2b+c\right).\frac{\left(a+2b+c+1-b\right)^2}{4}\)

\(=\left(a+2b+c\right).\frac{\left(a+b+c+1\right)^2}{4}\)

\(=\left(a+2b+c\right).\frac{4}{4}=a+2b+c\)

Dấu = xảy ra khi: 

\(\hept{\begin{cases}1-a=1-c\\a+2b+c=1-b\\a+b+c=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=c=\frac{1}{2}\\b=0\end{cases}}\)

17 tháng 10 2017

a. BC= 4+9=15 cm

=> AB2= 15*4=60=\(2\sqrt{15}\)cm

AH2= 60-16=44

AH= \(2\sqrt{11}\)

b. \(\widehat{B}\)\(\frac{AH}{BH}=\frac{\sqrt{11}}{2}\)

=> \(\widehat{B}=66\)độ 91 phút

=> AC= 15*tanB=36,24

C.

17 tháng 10 2017

Có thể sai đó bạn

18 tháng 10 2017

đặt \(\hept{\begin{cases}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\\z+\frac{1}{z}=c\end{cases}}\)=> \(\hept{\begin{cases}x^2+\frac{1}{x^2}=a^2-2\\y^2+\frac{1}{y^2}=b^2-2\\z^2+\frac{1}{z^2}=c^2-2\end{cases}}\) 

thay vào đề ta đc: \(\hept{\begin{cases}a+b+c=\frac{51}{4}\\a^2+b^2+c^2-6=\frac{771}{16}=>a^2+b^2+c^2=\frac{867}{16}\end{cases}}\)

mình chưa học giải hpt nên đến đây k biết lm đc nữa k

=))

18 tháng 10 2017

tìm mối quan hệ giữa hai kết quả rồi bất đẳng thức