giúp mik với nhé mn
\(A=\frac{x}{\sqrt{x}-1}+\frac{\sqrt{x}-2x}{x-\sqrt{x}}\) với x>0; x khác 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian để 2 vòi chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hệ \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{4}\\a=b+6\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{b+6}+\frac{1}{b}=\frac{1}{4}\\a=b+6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=6\\a=12\end{cases}}\left(tm\right)\) Vậy ...
\(\Delta=m^2-4\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác -2
Theo Vi et \(\hept{\begin{cases}x_1+x_2=m\left(1\right)\\x_1x_2=-m-1\left(2\right)\end{cases}}\)
Ta có \(2x_1-5x_2=-2\left(3\right)\)
Từ (1) ; (3) ta có \(\hept{\begin{cases}2x_1+2x_2=2m\\2x_1-5x_2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}7x_2=2m+2\\x_1=m-x_2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_2=\frac{2m+2}{7}\\x_1=\frac{5m-2}{7}\end{cases}}\)
Thay vào (2) ta được \(\frac{\left(2m+2\right)\left(5m-2\right)}{49}=-m-1\)
\(\Leftrightarrow10m^2+6m-4=-49m-49\)
\(\Leftrightarrow10m^2+55m+45=0\Leftrightarrow m=-1;m=-\frac{9}{2}\)(tm)
Xét pt đã cho có \(\Delta=m^2-4.1.\left(-m-1\right)=m^2+4m+4=\left(m+2\right)^2\ge0\)với mọi \(m\inℝ\)
Vậy pt đã cho luôn có 2 nghiệm với mọi \(m\inℝ\)
Theo định lí Vi-ét, ta có \(\hept{\begin{cases}x_1+x_2=-\frac{-m}{1}=m\\x_1x_2=\frac{-m-1}{1}=-m-1\end{cases}}\)
Lại có \(\left|x_1-x_2\right|\ge3\)\(\Leftrightarrow\left(x_1-x_2\right)^2\ge9\)(vì cả 2 vế của BĐT đầu đều lớn hơn 0)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge9\)\(\Leftrightarrow m^2-4\left(-m-1\right)\ge9\)\(\Leftrightarrow m^2+4m+4\ge9\)\(\Leftrightarrow\left(m+2\right)^2\ge9\)\(\Leftrightarrow\orbr{\begin{cases}m+2\ge3\\m+2\le-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
Vậy các giá trị của m để pt có 2 nghiệm x1, x2 thỏa mãn \(\left|x_1-x_2\right|\ge3\)là \(\orbr{\begin{cases}m\ge1\\m\le-5\end{cases}}\)
Lời giải:
Ta có:
\(P=\frac{\sqrt{x}(\sqrt{x^3}-8)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}\)
\(=\frac{\sqrt{x}(\sqrt{x}-2)(x+2\sqrt{x}+4)}{x+2\sqrt{x}+4}-\frac{\sqrt{x}(\sqrt{x}+1)}{\sqrt{x}}+\frac{2(\sqrt{x}-2)(\sqrt{x}+2)}{\sqrt{x}-2}=\sqrt{x}(\sqrt{x}-2)-(\sqrt{x}+1)+2(\sqrt{x}+2)\)
\(=x-2\sqrt{x}-\sqrt{x}-1+2\sqrt{x}+4=x-\sqrt{x}+3\)
$=(\sqrt{x}-\frac{1}{2})^2+\frac{11}{4}\geq \frac{11}{4}$ với mọi $x>0; x\neq 4$
$\Rightarrow \frac{a}{b}=\frac{11}{4}$
Vì $a,b$ nguyên dương và $\frac{a}{b}$ tối giản nên $a=11; b=4$
$\Rightarrow a+b=11+4=15$
30) Đặt \(HB=x;HC=y\)\(\left(x;y>0\right)\)
Dễ thấy \(x+y=HB+HC=BC=25\)(1)
\(\Delta ABC\)vuông tại A, đường cao AH \(\Rightarrow HB.HC=AH^2=12^2=144\)hay \(xy=144\)(2)
Từ (1) và (2) \(\hept{\begin{cases}x+y=25\\xy=144\end{cases}}\Leftrightarrow\hept{\begin{cases}y=25-x\\x\left(25-x\right)=144\end{cases}}\Leftrightarrow\hept{\begin{cases}y=25-x\\-x^2+25x=144\end{cases}}\Leftrightarrow\hept{\begin{cases}y=25-x\\x^2-25x+144=0\left(\cdot\right)\end{cases}}\)
Giải \(\left(\cdot\right)\), ta được \(x^2-25x+144=0\)pt này có \(\Delta=\left(-25\right)^2-4.1.144=49>0\)\(\Rightarrow\orbr{\begin{cases}x_1=\frac{-\left(-25\right)+\sqrt{49}}{2.1}=16\left(nhận\right)\\x_2=\frac{-\left(-25\right)-\sqrt{49}}{2.1}=9\left(nhận\right)\end{cases}}\)hay \(\orbr{\begin{cases}HB=16cm\\HC=9cm\end{cases}}\)
\(\Rightarrow50\%C\)và \(50\%D\), 2 đáp án này đều đúng.
31) Hạ đường cao AH của \(\Delta ABC\), vỉ \(\Delta ABC\)cân tại A nên đường cao AH cũng là trung tuyến và phân giác \(\Rightarrow\hept{\begin{cases}BC=2HB\\\widehat{BAH}=\frac{\widehat{BAC}}{2}=\frac{45^o}{2}=22,5^o\end{cases}}\)
\(\Delta ABH\)vuông tại H \(\Rightarrow BH=AB.\sin\widehat{BAH}=a.\sin22,5^o\)
\(\Rightarrow BC=2HB=2a.\sin22,5^o\)\(\approx0,765a\)
Mà \(\sqrt{2}\approx1,414\); \(\frac{\sqrt{2}}{2}\approx0,707\)nên không đáp án nào trong 4 đáp án A, B, C, D đúng cả.
(Sao kì vậy? Câu 30 hai đáp án đúng còn câu 31 không đáp án nào đúng)
1, Để (d) // (d') <=> \(\hept{\begin{cases}m=1\\3m+2\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\m\ne-\frac{1}{3}\end{cases}}\)
2, Thay y = 5 vào (d) ta được 5 = -3x + 2 <=> x = -1
=> A(-1;5)
Ta có (d') : y = ax - 4 ( a khác 0 ) đi qua A(-1;5)
<=> -a - 4 = 5 <=> a = -9 (tm)
a) m=1 và m≠-1/3. KL: m=1
b)
Vì đt (d) cắt đt hs y=ax-4 tại điểm có tung độ bằng 5 hay y=5. Thay y=5 vào đt (d) ta có:
5=-3x+2 ⇔x=-1
*) Thay x=-1 và y=5 vào hso y=ax-4 ta có:
a.(-1)-4=5⇔a=-9
KL:.....................
Hoành độ giao điểm tm (P) ; (d) tm pt
\(x^2-2x-m+2=0\)
\(\Delta'=1-\left(-m+2\right)=m-1\)
Để (P) cắt (d) tại 2 điểm pb khi m > 1
Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m+2\end{cases}}\)
Ta có \(\left(x_1-x_2\right)^2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)
Thay vào ta được \(4-4\left(-m+2\right)=4\Leftrightarrow4m-4=4\Leftrightarrow m=2\left(tm\right)\)
Xét ....
x2=2x+m-2 ⇔x2-2x-m+2=0 (1)
để (d) cắt (P) tại hai điểm phân biệt thì (1) có 2 nghiệm PB.
Hay Δ'>0 Hay: 1+m-2>0 ⇔ m-1>0 ⇔m>1.
Với m>1 thì (1) có 2 nghiệm pb x1; x2. Theo hệ thức Viet ta có:
S=x1+ x2=2 và P=x1. x2=-m+2
Ta có: |x1-x2|=2
⇔( |x1-x2|)2=22
⇔(x1-x2)2=4 ⇔\(x^2_1-2x_1x_2+x^2_2=4\Leftrightarrow x_1^2+x_2^2+2x_1x_2-2x_1x_2-2x_1x_2=4\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\)=4
⇔S2-4P=4 Hay 22-4(-m+2)=4 ⇔4m=8 ⇔m=2 (TM)
Vậy ..........
\(A=\frac{x}{\sqrt{x}-1}+\frac{\sqrt{x}-2x}{x-\sqrt{x}}\)
\(=\frac{x}{\sqrt{x}-1}+\frac{1-2\sqrt{x}}{\sqrt{x}-1}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
bn làm tắt à