K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2024

1: BN//OM

=>góc MON=góc ONB và góc AOM=góc OBN

mà góc ONB=góc OBN

nên góc MON=góc AOM

=>OM là phân giác của góc AON

2: Xét ΔOAM và ΔONM có

OA=ON

góc AOM=góc NOM

OM chung

Do đó: ΔOAM=ΔONM

=>góc ONM=góc OAM=90 độ

=>MN là tiếp tuyến của (O)

NV
5 tháng 1 2024

a.

Ta có \(MA=MB\) (t/c hai tiếp tuyến cắt nhau)

\(OA=OB=R\)

\(\Rightarrow OM\) là trung trực AB hay OM vuông góc AB

AC là đường kính và B là điểm thuộc đường tròn \(\Rightarrow\widehat{ABC}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ABC}=90^0\Rightarrow AB\perp BC\)

\(\Rightarrow BC||OM\) (cùng vuông góc AB)

b.

Do MA là tiếp tuyến \(\Rightarrow AM\perp AC\) hay tam giác MAC vuông tại A

AC là đường kính và K thuộc đường tròn \(\Rightarrow\widehat{AKC}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{AKC}=90^0\) hay AK là đường cao trong tam giác vuông MAC

Áp dụng hệ thức lượng:

\(AC^2=CK.CM\Rightarrow CK.CM=\left(2R\right)^2=4R^2\)

c.

Em có nhầm đề ko nhỉ, vì 2 góc này hiển nhiên bằng nhau, ko cần chứng minh, do 1 góc là góc nội tiếp và 1 góc là góc tạo bởi tiếp tuyến và dây cung, cùng chắn cung BK.

NV
5 tháng 1 2024

loading...

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ

7 tháng 10 2017

a, Vì  M B C ^ = M D B ^ = 1 2 s đ C B ⏜  nên chứng minh được ∆MBC:∆MDB (g.g)

b, Vì  M B O ^ + M A O ^ = 180 0  nên tứ giác MAOB nội tiếp

c, Đường tròn đường kính OM là đường tròn ngoại tiếp tứ giác MAOB => r =  M O 2

Gọi H là giao điểm của AB với OM

=> OH ⊥ AB; AH = BH =  R 3 2

Giải tam giác vuông OAM, đường cao AH ta được OM = 2R Þ r = R

d,  Ta có  M I B ^ = s đ D E ⏜ + s đ B C ⏜ 2 và  M A B ^ = s đ A C ⏜ + s đ B C ⏜ 2

Vì AE song song CD =>  s đ D E ⏜ = s đ A C ⏜ =>  M I B ^ = M A B ^

Do tứ giác MAIB nội tiếp hay 5 điểm A, B, O, I, M nằm trên cùng 1 đường tròn kính MO

Từ đó ta có được  M I O ^ = 90 0 => OI ⊥ CD hay I là trung điểm của CD