Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(\left(2x+1\right)^2+\left(2x-1\right)^2-2\left(1+2x\right)\left(2x-1\right)\)
\(=(4x^2+4x+1)+(4x^2-4x+1)-2(4x^2-1)\)
\(=4x^2+4x+1+4x^2-4x+1-8x^2+2\)
\(=(4x^2+4x^2-8x^2)+(4x-4x)+(1+1+2)\)
\(=4\)
\((x-1)^3-(x+2)(x^2-2x+4)+3(x-1)(x+1)\)
\(=(x^3-3x^2+3x-1)-(x^3+8)+3(x^2-1)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-3\)
\(=(x^3-x^3)+(-3x^2+3x^2)+3x+(-1-8-3)\)
\(=3x-12\)
\(\left(x-2\right)^3+\left(2x+1\right)^2+2\left(x+2\right)\left(1-x\right)-9x^3+2x\)
\(=x^3-6x^2+12x-8+8x^3+12x^2+6x+1+2\left(x+2\right)\left(1-x\right)-9x^3+2x\)
\(=9x^3+6x^2+18x-7+2\left(x-x^2+2-2x\right)-9x^3+2x\)
\(=6x^2+20x-7-2x^2-2x+4=4x^2+18x-3\)
a) \(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)
\(=\left(x^2-4\right)-\left(x^2-2x-3\right)\)
\(=x^2-4-x^2+2x+3\)
\(=2x-1\)
a) (x + 2)(x - 2) - (x - 3)(x + 1)
= x2 - 4 - x2 + 2x + 3
= 2x - 1
b) (2x + 1)2 + (3x - 1)2 + 2.(2x + 1)(2x - 1)
= 4x2 + 4x + 1 + 9x2 - 6x + 8x2 - 2
= 21x2 - 2x
\(P=\left(\dfrac{1}{x-1}-\dfrac{2x}{x^3-x^2+x-1}\right):\left(\dfrac{1-2x}{x+1}\right)\left(ĐKXĐ:x\ne0;x\ne\pm1\right)\)
\(=\left(\dfrac{1}{x-1}-\dfrac{2x}{x^2\left(x-1\right)+\left(x-1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)
\(=\left(\dfrac{1}{x-1}-\dfrac{2x}{\left(x-1\right)\left(x^2+1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)
\(=\left(\dfrac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}\right):\left(\dfrac{1-2x}{x+1}\right)\)
\(=\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x^2+1\right)}:\dfrac{1-2x}{x+1}\)
\(=\dfrac{x-1}{x^2+1}:\dfrac{1-2x}{x+1}\)
\(=\dfrac{x-1}{x^2+1}.\dfrac{x+1}{1-2x}\)
\(=\dfrac{x^2-1}{\left(x^2+1\right)\left(1-2x\right)}\)
(-x+3)(2x-1)+(x+1)(x-2)
= -2x\(^2\)+x+6x+x\(^2\)-2x+x-2
= -x\(^2\)+6x-2