K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2020

\(A=\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)

\(=\frac{x^2\left(1+a+a^2\right)+\left(1+a+a^2\right)}{x^2\left(1-a+a^2\right)+\left(1-a+a^2\right)}\)

\(=\frac{\left(1+a+a^2\right)\left(1+x^2\right)}{\left(1-a+a^2\right)\left(1+x^2\right)}=\frac{1+a+a^2}{1-a+a^2}\) không phụ thuộc vào x

28 tháng 2 2017

a/ \(P=\frac{\left(x^2+a\right)\left(1+a\right)a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)

b/ Từ phân số rút gọn thì ta thấy P không phụ thuộc vào x và có nghĩa với mọi x.

Ta lại có \(a^2-a+1=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy P không phụ thuộc vào x và có nghĩa với mọi x và a

28 tháng 2 2017

P khong phu thuoc vao x va co nghia voi x va a

1 tháng 4 2020

Ta có : 

\(\frac{\left(x^2+a\right)\left(1+a\right)+a^2x^2+1}{\left(x^2-a\right)\left(1-a\right)+a^2x^2+1}\)

\(=\frac{x^2+x^2a+a+a^2+a^2x^2+1}{x^2-x^2a-a+a^2+a^2x^2+1}\)

\(=\frac{\left(x^2+1\right)+\left(x^2a+a\right)+\left(a^2+a^2x\right)}{\left(x^2+1\right)-\left(x^2a+a\right)+\left(a^2+a^2x^2\right)}\)

\(=\frac{\left(x^2+1\right)+a\left(x^2+1\right)+a^2\left(x^2+1\right)}{\left(x^2+1\right)-a\left(x^2+1\right)+a^2\left(x^2+1\right)}\)

\(=\frac{\left(x^2+1\right)\left(a^2+a+1\right)}{\left(x^2+1\right)\left(a^2-a+1\right)}=\frac{a^2+a+1}{a^2-a+1}\)

a: \(=6x^2-9x+14x-21-4x^2+20x-25-2x\left(x+6\right)+5-31x\)

\(=2x^2-6x-41-2x^2-12x\)

=-18x-41

b: \(=2x^2-6x-2x^2+6x+14=14\)

c: \(=x^3+1-x^3+1=2\)

27 tháng 2 2017

Tử của P: \(T=x^2\left(1+a\right)+a\left(1+a\right)+a^2x^2+1=\left(1+a+a^2\right)x^2+\left(a^2+a+1\right)\)

\(T=\left(a^2+a+1\right)\left(x^2+1\right)\)

Mẫu của P:

\(M=x^2\left(1-a\right)-a\left(1-a\right)+a^2x^2+1=\left(1-a+a^2\right)x^2+\left(a^2-a+1\right)\)

\(M=\left(a^2-a+1\right)\left(x^2+1\right)\)

Ta có: \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\left(x^2+1\right)\ne0\forall x\)

a)\(P=\frac{T}{M}=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{\left(a^2+a+1\right)}{\left(a^2-a+1\right)}\)

b) từ (a) giá trị của P không con x trong biểu thức => P không phụ thuộc x--> dpcm

12 tháng 9 2017

Đăng ít thôi.

12 tháng 9 2017

Liên quan à!!!

19 tháng 9 2018

a,\(A=\left(x-1\right)\left(x^2+x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(A=x^3-1-\left(x^3+1\right)=-2\) (const)

b,\(B=2x\left(4x+1\right)-8x^2\left(x+1\right)+\left(2x\right)^3-2x+3\)

\(=8x^2+2x-8x^3-8x^2+8x^3-2x+3\)

\(\Rightarrow B=3\) (const)

Vậy giá trị của đa thức không phụ thuộc vào x.