Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 3 + 32 + ... + 32009
S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 32008 + 32009 )
S = 1.4 + 32(1+3) + ... + 32008(1+3)
S = 1.4 + 32.4 + ... + 32008.4
S = 4.(1+32+...+32008) chia hết cho 4
Ta có
S = 1 + 3 + 32 + 33 + 34 + ... + 32009
S = ( 1 + 3 ) + ( 32 + 33 ) + ( 34 + 35 ) + ... + ( 32008 + 32009 )
S = 4 + 4 . 32 + 4. 33 + ... + 4 . 32008 chia hết cho 4
S = 1 + 3 + 32 + .......... + 32008 + 32009
= ( 1 + 3 ) + ( 32 + 33 ) + ............. + ( 32008 + 32009 )
= 4 + 32( 1 + 3 ) + ............ + 32008( 1 + 3 )
= 4 + 4 . 32 + .......... + 4 . 32008
= 4( 1 + 32 +......... + 32008 ) chia hết cho 4
KL:.....................
S = 1 + 3 + 32 + 33 + 34 + 35 + ... + 32008 + 32009
S = (1 + 3) . 1 + (1 + 3) . 33 + (1 + 3) . 35 + ... + (1 + 3) . 32009
S = 4 . 1 + 4 . 33 + 4 . 35 + ... + 4 . 32009
S = 4 . (1 + 33 + 35 + ... + 32009)
Suy ra S chia hết cho 4
tick đê
a giải luôn cho e nhé
7A=7+72+73+...+72008
7A-A=[7+72+73+...+72008]-[1+7+72+..+72007]
6A=72008-1
A=72008-1/6
b,Tương tư nhân B vs 4 là ra
Mình chỉ trả lời được 2 câu đầu thôi nhé:
a.A= \(1+7+7^2+7^3+...+7^{2007}\)
A.7 = \(7+7^2+7^3+7^4+...+7^{2008}\)
A7-A = \(\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
A6 =\(7^{2008}-1\)
\(\Rightarrow A=7^{2008}-1\)
Câu còn lại làm tương tự bạn nhé
Dễ quá, thực hiện qui tắc bỏ dấu ngoặc được:
\(2009+2009^2+....+2009^{2009}-1-2009-...-2009^{2008}\)
\(=-1+\left(2009-2009\right)+\left(2009^2-2009^2\right)+...+\left(2009^{2008}-2009^{2008}\right)+2009^{2008}\)
\(=2009^{2008}-1\)
\(=\left(2009-1\right)\left(2009^{2007}+2009^{2008}+...+2009+1\right)\)
\(=2008\left(2009^{2007}+2009^{2008}+...+2009+1\right)\) chia hết cho 2008
=> ĐPCM
Chứng Minh Rằng: (2009+20092+20093+20094+...+20092009)-(1+2009+20092+20093+...+20092008) chia hết cho 2008.
Đặt A=2009+20092+20093+20094+...+20092009, B=1+2009+20092+20093+20094+...+20092008
Ta có:
+)A=2009+20092+20093+20094+...+20092009
2009A= 20092+20093+20094+...+20092010
2009A-A=(20092+20093+20094+...+20092010)-(2009+20092+20093+20094+...+20092009)
2008A=20092010- 2009
=> A=(20092010- 2009)/2008
=> A chia hết cho 2008.
B=1+2009+20092+20093+20094+...+20092008
2009B=2009+20092+20093+20094+...+20092010
2009B-B=(2009+20092+20093+20094+...+20092010)-(1+2009+20092+20093+20094+...+20092009)
2008B=20092010-1
=>B=(20092010-1)/2008
=>B chia hết cho 2008
=> A-B chia hết cho 2008.
=> ĐPCM
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
S=1+3(2+3+...+2009)
S=1+32019044
S=42019044
Mà (2+1+0+9+0+4+4=20)
Không chia hết cho 9
a) \(\Rightarrow S=\left(1+3\right)+\left(3^2+3^3\right)+.....+\left(3^{88}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+......+3^{88}\left(1+3\right)\)
\(\Rightarrow A=1.4+3^2.4+..........+3^{88}.4\)
\(\Rightarrow A=4.\left(1+3^2+.........+3^{88}\right)\)
Vậy A chia hết cho 4 ĐPCM
b) \(\Rightarrow A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)\)\(+......+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(\Rightarrow A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+\)\(....+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow A=1.40+3^4.40+.......+3^{96}.40\)
\(\Rightarrow A=40.\left(1+3^4+....+3^{96}\right)\)
Vậy A chia hết cho 40 ĐPCM
*Chứng minh A chia hết cho 4
Ta có: \(A=\left(3^1+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2015}+3^{2016}\right)\)
\(=3^1.\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)
\(=4\left(3^1+3^3+...+3^{2015}\right)⋮4^{\left(đpcm\right)}\)
*Chứng minh A chia hết cho 13
Ta có: \(A=\left(3^1+3^2+3^3\right)+...+\left(3^{2014}+3^{2015}+3^{2016}\right)\)
\(=3\left(1+3^1+3^2\right)+...+3^{2014}\left(1+3^1+3^2\right)\)
\(=13\left(3+...+3^{2014}\right)⋮13^{\left(đpcm\right)}\)
S = 1 + 3 + 3^2 + 3^3 + 3^4 + .... + 3^2009
S = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 + .... + 3^2009
Từ 0 -> 2009 có tất cả số số hạng là :
( 2009 - 0 ) : 1 + 1 = 2010 ( số )
=> có : 2010 : 2 = 1005 cặp
=> S = ( 3^0 + 3^1 ) + ( 3^2 + 3^3 ) + ( 3^4 + 3^5 ) + .... + ( 3^2008 + 3^2009 )
=> S = ( 1 + 3 ) + ( 9 + 27 ) + ( 81 + 243 ) + ....
=> S = 4 + 36 + 324 + ....
Ta thấy 4 ; 36 ; 324 đều chia hết cho 4 => ( 3^0 + 3^1 ) + ( 3^2 + 3^3 ) + ( 3^4 + 3^5 ) chia hết cho 4
=> 3^2008 + 3^2009
=> ( 3^0 + 3^1 ) + ( 3^2 + 3^3 ) + ( 3^4 + 3^5 ) + .... + ( 3^2008 + 3^2009 ) chia hết cho 4
=> S chia hết cho 4
Vậy ...
( MK làm theo suy nghĩ có gì trình bày sai or gì đó bạn có thể sửa lại !! ^^