Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{1990^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(=1-\frac{1}{1990}=\frac{1989}{1990}\)
Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{1990^2}< \frac{1989}{1990}< \frac{3}{4}\)nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}< \frac{3}{4}\)
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
a) 1 + 3 + 32 + 33 + ... + 311
= (1 + 3 + 32 + 33) + ... + (38 + 39 + 310 + 311)
= 40 + ... + 38.(1 + 3 + 32 + 33)
= 40 + ... + 38. 40
= (1 + ... + 38) . 40 \(⋮\)40
b) Ta có: B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
=> B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
=> B < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=> B <\(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
=> B < \(1-\frac{1}{100}\)
=> B < 1
Đặt \(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{2009^3}\)
Ta CM công thức sau :
\(\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)
Thật vậy ta có : \(\left(n-1\right).n.\left(n+1\right)=\left(n-1\right)\left(n+1\right).n=\left(n^2-1\right).n=n^3-n< n^3\\ \Rightarrow\dfrac{1}{n^3}< \dfrac{1}{\left(n-1\right).n.\left(n+1\right)}\)
Áp dụng công thức trên vào biểu thức A ; ta có :
\(A=\dfrac{1}{2^3}+\dfrac{1}{3^3}+...+\dfrac{1}{2009^3}\\ < \dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{2008.2009.2010}\\ =\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}-\dfrac{1}{2009.2010}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2009.2010}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.2009.2010}< \dfrac{1}{4}\)
Anh Tú xem xét bài e nhé !!
Bài 2:
Đặt \(2017-x=a;2019-x=b;2x-4036=c\)
\(\Rightarrow a+b+c=0\)
Do \(a+b+c=0\Rightarrow a+b=-c\Leftrightarrow\left(a+b\right)^3=-c^3\)
Có : \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3=-c^3-3ab.\left(-c\right)+c^3=3abc\)
Do \(\left(2017-x\right)^3+\left(2019-x\right)^3+\left(2x-4036\right)^3=0\)
\(\Rightarrow3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\2x-4036=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)