Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vậy bây giờ chị có nhớ cách giải nữa không vậy ? Chị bày cho em với ạ.
A B C D M N P Q K
Bạn cần thêm điều kiện AB = AD .
Gọi K là trung điểm của AD. Dễ dàng chứng minh được MNPQ là hình vuông
Suy ra : \(S_{MNPQ}=\frac{NQ^2}{2}\)
Mặt khác, ta luôn có : \(KQ+QN\ge KN\) \(\Rightarrow QN\ge\left|KN-KQ\right|=\frac{1}{2}\left|c-a\right|\)
\(\Rightarrow QN^2\ge\frac{\left(c-a\right)^2}{4}\Rightarrow S_{MNPQ}=\frac{QN^2}{2}\ge\frac{\left(c-a\right)^2}{8}\)
Dấu "=" xảy ra khi M , Q, N thẳng hàng => AB // CD
Bạn tự vẽ hình :)
Gọi O là giao điểm của BN và CM . Đặt ON = x , OM = y
Ta có : AB2 = 4MB2=4.(4x2+y2)
AC2=4.NC2=4.(x2+4y2)
\(\Rightarrow AB^2+AC^2=4\left(5x^2+5y^2\right)=5\left(4x^2+4y^2\right)=5BC^2\)
Áp dụng t/c đường trung bình trong tam giác để chứng minh 2 cạnh hình thang song song với nhau
Hoàng Lê Bảo Ngọc ns đúng đó