Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có nghiệm thì \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)
Ta có:\(x_1=\frac{-1+\sqrt{1-4m}}{2};x_2=\frac{-1-\sqrt{1-4m}}{2}\)
\(\Rightarrow\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=m\end{cases}}\)
\(\Rightarrow x_1^2\left(x_1+1\right)+x^2_2\left(x_2+1\right)=m\le\frac{1}{4}\)
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
đây lại là ba cái đenta ;P;rồi thì S đó bạn !cả 2 nghiệm cùng âm dương jj đó tra mạng ra ngay mà
Ta có: \(\Delta=\) \(\left(m-2\right)^2+4.8>0\)
=> Phương trình luôn có hai nghiệm \(x_1;x_2\)phân biệt.
Áp dụng định lí Viet ta có: \(\hept{\begin{cases}x_1+x_2=-m+2\\x_1.x_2=-8\end{cases}}\)=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-m+2\right)^2+16\)
Khi đó: \(Q=\left(x_1^2-1\right)\left(x_2^2-1\right)=x_1^2.x_2^2-\left(x_1^2+x_2^2\right)+1=8^2-\left(m-2\right)^2-16+1\)
\(=-\left(m-2\right)^2+49\le49\)
Vậy min Q = 49 tại m=2
Xét \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)
Áp dụng Viete ta có:\(x_1+x_2=-1;x_1x_2=m\)
\(Q=x_1^2\left(x_1+1\right)+x_2^2\left(x_2+1\right)\)
\(=x_1^3+x_1^2+x_2^3+x_2^2\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2\)
\(=-1^3-3\cdot m\cdot\left(-1\right)+\left(-1\right)^2-2m\)
\(=-1+3m+1-2m\)
\(=m\le\frac{1}{4}\)
Đẳng thức xảy ra khi m=1/4