Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Phân tích đa thức thành nhân tử:
a) x(y+z) + 3(y+z)
\(=\left(y+z\right)\left(x+3\right)\)
b) 2x2 - 6x
\(=2x\left(x+3\right)\)
c) x2 - y2 - 3x - 3y
\(=\left(x^2-y^2\right)-\left(3x+3y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-3\right)\)
d) 2x2 - 5x - 3
\(=2x^2-6x+x-3\)
\(=\left(2x^2-6x\right)+\left(x-3\right)\)
\(=2x\left(x-3\right)+\left(x-3\right)\)
\(=\left(x-3\right)\left(2x+1\right)\)
e) x4 - y4
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
f) mx - my + nx - ny
\(=\left(mx-my\right)++\left(nx-ny\right)\)
\(=m\left(x-y\right)+n\left(x-y\right)\)
\(=\left(x-y\right)\left(m+n\right)\)
Bài 1:
a,\(x\left(y+z\right)+3\left(y+z\right)\)
\(=\left(x+3\right)\left(y+z\right)\)
b,\(2x^2-6x\)
\(=2x\left(x-6\right)\)
c,\(x^2-y^2-3x-3y\)
\(=\left(x^2-y^2\right)+\left(-3x-3y\right)\)
\(=\left(x-y\right)\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x-y-3\right)\left(x+y\right)\)
d,\(2x^2-5x-3\)
\(=2x^2-6x+1x-3\)
\(=\left(2x^2-6x\right)+\left(1x-3\right)\)
\(=2x\left(x-3\right)+1\left(x-3\right)\)
\(=\left(2x+1\right)\left(x-3\right)\)
e,\(x^4-y^4\)
\(=\left(x^2\right)^2-\left(y^2\right)^2\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)\)
f,\(mx-my+nx-ny\)
\(=\left(mx-my\right)+\left(nx-ny\right)\)
\(=m\left(x-y\right)+n\left(x-y\right)\)
\(=\left(m+n\right)\left(x-y\right)\)
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a: \(\Leftrightarrow x^3+8-x^3-3x=5\)
=>3x=3
hay x=1
b: \(\Leftrightarrow x^3-8-x\left(x^2-1\right)=8\)
\(\Leftrightarrow x^3-8-x^3+x=8\)
=>x=16
c: =>x2+2=3
=>x2=1
=>x=1 hoặc x=-1
f: \(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+3\right)^2=0\)
=>x=1 và y=-3
\(x^2+4y^2+z^2-2x-6z+8y+15\)
\(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1\)
\(=\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1>0\forall x;y\)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)
Chúc bạn học tốt.
b: x^2-2x-35=0
=>(x-7)(x+5)=0
=>x=7 hoặc x=-5
a: Sửa đề; (x-1)^2-2x-15=0
=>x^2-2x+1-2x-15=0
=>x^2-4x-14=0
=>\(x=2\pm3\sqrt{2}\)
`a, (x-y)^2 -2x-15=0`
`<=> (x-y)^2 = 2x +15`
`<=>x-y = +-sqrt(2x+15)`.
`<=> y= x +-sqrt(2x+15)`.