Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Độ dài đường cao hình chóp A.BCD chính là khoảng cách từ A đến (BCD).
⇒ (BCD) nhận là 1 vtpt
⇒ (BCD): x – 2y – 2z + 2 = 0
⇒ Độ dài đường cao hình chóp A.BCD là:
a) Cách 1:
Phương trình đoạn chắn (ABC) là:
hay x + y + z – 1 = 0.
Thay tọa độ điểm D(-2; 1; -1) ta được: (-2) + 1 + (-1) – 1 = -3 ≠ 0
⇒ D không nằm trong (ABC)
⇒ A, B, C, D không đồng phẳng
⇒ A, B, C, D là bốn đỉnh của một tứ diện.
Cách 2:
⇒ A, B, C, D không đồng phẳng
⇒ A, B, C, D là bốn đỉnh của hình tứ diện.
\(\overrightarrow{n_{\left(\beta\right)}}=\left(2;-3;-3\right)\)
\(\overrightarrow{MN}=\left(2;-1;4\right)\)
\(\Rightarrow\left[\overrightarrow{n_{\left(\beta\right)}};\overrightarrow{MN}\right]=\left(-15;-14;4\right)\Rightarrow\left(\alpha\right)\) nhận (15;14;-4) là 1 vtpt
Từ vtpt nói trên có thể thấy cả 4 đáp án đều sai
Ta có : 1 < x < 0
để x thỏa mãn thì 1 < 0
mà 1 > 0
=> x \(\in\varnothing\) ( không có giá trị nào thỏa mãn )
1<\(\varphi\)<0